
rAD-A16. 374 A COMPUTER SIMULATION OF THE L-RR8INOSE GENE-ENZYmE 12
COMPLEX WI1TH AN ANAL (U) AIR FORCE INST OF TECH

U ~~NCLRIGHT-PATTERSON AFS OH B L GEORGE t985

UNCLASSIFIED AFIT/CI/NR-6-CD F/G 6/t MEhhhmmmhmhilI
E|hhEEEEEE|hhE
IIIIIIIIIIIIIIfl..fl
Ifllllllllllll
EhhEEEElhElhhI

I lfllflflfllflfllllfl



60

Iuuou

MICROCOPY~ RESOLLUTIONlP H

NATIONAL S~.3O INU
6 t6-



SECURITY CLASSIFICATION OF THIS PAGE (When Deto Entered)

I REORT OCUENTAION AGEREAD INSTRUCTIO4NS
______ REPORT_________________________PAGE_ BEFORECOMPLETINGFORM

I. REPORT NUMBER 2.GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

I. TITE(ndbitle)-6 S. TYPE OF REPORT A PERIOD COVERED

S A Computer Simulation of the L-arabinose .J
1% Gene-Enzyme Complex an Analysis of Its Control YOPS1'/DISSERTATION
( Methodology 6. PERFORMING O1G. REPORT NUMBER

AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

co Bruce L. George

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

< AFIT STUDENT AT: AREA A WORK UNIT NUMBERS

TeOhio State University

SI. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

~m AFIT/NR 1985
WPAFB OH 45433-6583 13. NUMBER OF PAGES

________________________________________ 145
.4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASS

15a. DECL ASSI FI CATI ONDOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: lAW AFR 190-1 Dean oRsacan

Professional Development
AFIT/NR, WPAFB OH 45433-6583

19. KEY WORDS (Continue on reverse side if neceSary mnd identify by block number)

20. ABSTRACT (Continlue on reverse side If necessary end Identify by block number) f E CT

E

TIC FILE COPY
DD I AN7 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)



A Computer Simulation of the L-arabinose Gene-Enzyme

Complex with an Analysis of Its Control Methodology

By

Ituce L. George, Ph.D.

The Ohio State University, 1985

Professor Richard M. Campbell, Adviser

his research investigated mathematically aspects of the %emand

Theory of Gene Regulation, which relates the evolution of control of

gene activity to the environmental pressure upon the organism. The

specific goal was to utilize an engineering systems approach to

quantify some portions of this theory and examine the energy cost to

the organism of alternative strategies of genetic control.

A systems theory approach was taken to represent the biological

system by a linear time invariant realization. The L-arabinose

gene-enzyme complex of E. coli w&s simulated on the computer using an

eight state space model. This operon is regulated by both a repressor

and an activator thus combining both negative and positive control.

The first six states of the model represented protein/DNA

interactions, while the final two states represented the

concentrations of the repressor and activator proteins. All inputs to

the system (RNAP, cAMP and L-arabinose) were considered as step
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nputs. The output (L-arabinose isomerase specific activity) was

related directly to the activity of the DNA in the biological system.

The stability, controllability, frequency response and state space

relationships of the system model were studied. Coefficients in the

system's equations were optimized based upon least square error

criteria using as expected values the uninduced and induced values of

L-arabinose isomerase specific activity as reported in the

literature. Four models were developed and then compared to published

biological data. Residual analysis on a set of biological variables

was used to diffrentiate among the models and select the model of

best fit.

A model utilizing repressor only control was also developed for

the L-arabinose system. The resulting five state model was optimized

and tested against reported data utilizing residual analysis.

A quadratic cost function was used to compare alternative

control methodologies. Cost comparisons were made between the five

state and eight state models. The energy cost to the cell was assumed

to be proportional to the protein/DNA associations and the

concentrations of the repressor and activator proteins. Results of

the cost analysis show that a dual control system is more cost

effective under most environmental conditions for this specific
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Chapter 1

Introduction

1.1 Overview

The purpose of this research was to investigate mathematically

aspects of the "Demand Theory of Gene Regulation." According to this

.4 theory, control of gene activity evolves in response to the

.4 environmental pressure exerted upon the organism [1,2]. When the

environment demands frequent expression of a particular gene,

selection favors a positive form of gene control (eg. activator

Scontrol). When a gene is rarely expressed in a particular environment,

selection favors negative control (eg. repressor control). The

specific goal of the present study was to utilize an engineering

approach to quantify further some portions of this theory by examining

the energy cost to the cell of alternative strategies of genetic

controls. This was done by forming state space system rcpresentations

for the alternative strategies and relating the cellular energy cost

to the states of the representations. A form of the quadratic cost

function from optimal control theory was used to evaluate the energy

cost to the cell [3].

The L-arabinose system of E. coli was selected for study because

it presents an interesting and comparatively well documented case.

This system, like the tryptophan operon of E. coli, is under dual



2

control [1]. Dual control systems are relatively rare. Most operons

are under only singular control such as the negatively controlled

galactose operon or the positively controlled maltose operon [2]. The

L-arabinose operon is regulated by both a repressor and an activator

thus combining both negative and positive control [4]. The theory

hypothesizes that this dual control came about because E. coli

commonly inhabits two different environments, one of which has

arabinose present as a carbon source and one that does not [1].

The L-arabinose gene-enzyme complex was simulated on the computer

using an eight state space linear model. The first six states

represented protein/DNA interactions and the final two states

represented the concentrations of the repressor and activator

Iproteins. The computer model was based on the current

repressor/activator model for the A,B,C and D genes of the L-arabinose

complex [4,5,6]. Where possible, data from the literature was used to

develop the interrelationships between the states, and their

relationships to the inputs and the outputs. Where data did not exist

in the literature, the best engineering/biological estimates were

made. All inputs to the system-(RNAP, cAMP and L-arabinose) were

considered as step inputs (representing a constant level of substance

available to the cell) and the output (L-arabinose isomerase specific

activity) was taken as a linear multiple of the PBAD/RNAP

associations. Coefficients in the system's equations were optimized

based upon a least square error criterion using as expected values the

uninduced and induced values of L-arabinose isomerase specific
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activity as reported in the literature [7]. Four models in all were

developed and then compared to the published data. A nonlinearity

(limiting the states of the system to non negative values) was

introduced for physiological matching in two of the models. Residual

analysis was used to differentiate among the models and select the

model of best fit.

In order to compare alternative control methodologies, a

hypothetical model utilizing repressor only control was developed for

the L-arabinose system. The resulting five state model was tested

against reported data utilizing residual analysis, and also compared

to the dual control eight state model.

A cost analysis was performed on both models and comparisons made

.. between the models. The cost analysis was based upon a cellular cost

function that was designed to represent an energy cost to the cell.

The energy cost to the cell was assumed to be proportional to the

protein/DNA associations and the concentrations of the repressor and

activator proteins. The cost function was evaluated under several

conditions including various mutational circumstances. The repressor

only control model was found to be almost twice as energy expensive as

the dual control model. Thus, the results of the cost analysis suggest

that a dual control system is more cost effective for the regulation

of this specific gene-enzyme complex.
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1.2 Modeling Physiological Systems

To accomplish this research, a mathematical model of the

Gene-Enzyme complex had to be developed. In general, a mathematical

model can be defined as a set of equations that approximately describe

the behavior of a particular system [8]. The model should closely

resemble the actual system and predict its behavior under varying

conditions in so far as possible. The model is usually simplified,

describing only some of the parameters of the real system. How well a

model works and its correspondence to the system being modeled depends

greatly on the assumptions made during the design of the model. The

assumptions made depend primarily on the viewpoint of the modeler. The

modeler decides what information is to be included in the model and

?how this information is going to be used. Although there are no rules

for model building, the following represent some of the general steps

to model building [8]:

1. Understand the natural history of the system to be

modeled. Identify the dependent and independent variables of the

system, the interrelationships between these variables and the inputs

and outputs of the system. This was done for the L-arabinose system

using, where possible, information available from the biological

literature. A discussion of the variables chosen and their

interrelationships is found in section 2.1.

2. Review the literature on systems modeling. Examine models

and approaches used on systems similar to the one to be modeled.

Examine the similarities of other systems' models and problems

*1
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encountered during their modeling. A review of the literature relevant

to this study is found in section 1.4.

3. Determine the mathematical form of the model. Choose

between a linear or a nonlinear set of equations. A linear model was

chosen in this study to represent the L-arabinose system. The reasons

for this selection are discussed in section 2.1.

4. Estimate the parameters of the model. Choose a method of

parameter optimization. Design the model against a specific criterion.

The parameter optimization for the model of the L-arabinose system is

*found in section 2.2.

5. Test the model. Validate the model by examining the

consistency of the model's output under known experimental conditions

other than those used to develop the model. Testing of the model for

the L-arabinose system is found in Chapter 3.

Following such an approach assists the modeler in preparing a

mathematical description of a system that both resembles the system's

structure and mimics its function.

Lastly, in the words of Economos [9], "For a model of a system to

be valuable in physiological research, it should be able to generate

more information than the modeller put into it." A model should be

able to duplicate a system's response to conditions which were not

taken into account during development of the model, and it should

provide new hypotheses on some unknown properties of the system that

could be later verified by experimentation.
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1.3 The L-Arabinose Gene-Enzyme Complex

The L-arabinose gene-enzyme complex has been extensively reviewed

by several researchers [4,5,6]. The complex consists of at least five

structural genes and one controlling gene. It has been studied most

thoroughly in the bacterium Escherichia coli. The structural genes of

the complex contain information for the enzymes required for the

metabolism of the sugar, L-arabinose. L-arabinose is a carbon source

of unpredictable availability to the bacterium. Genetic mapping has

revealed that three of the structural genes (BoA,D) and the

controlling gene (C) lie on one contiguous segment of the E. coli

chromosome (Figure 1.1) [10]. Genes B, A, and D code for the enzymes

L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate

4-epimerase respectively. Expression of genes araA, araB and araD is

controlled through a set of genetic sites which are located on the

chromosome between araC and araB. These controlling sites include the

operator site, araO, the promoter site for the araC gene, Pc, and the

promoter site for the three structural genes, PBAD [11]. Genes BA,

and D are transcribed as a single unit which means that when the

promoter, PBAD, is activated, all three genes turn on production of

messenger RNA. This messenger RNA (mRNA) is then used in the cell for

the production of the enzymes [12].

40b
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Figure 1.1

The remaining two genes of the complex, araE and araF, are

located elsewhere on the chromosome. These genes are involved in the

Yroduction of the enzymes responsible for the transport of L-arabinose

into the cell. Even though they are located at some distance from the

rest of the complex, these two genes are also under the control of the

regulatory gene, araC [4].

This gene-enzyme complex is regulated by both positive and

negative control. Such dual control is rarely found in genetic

systems. The classic Jacob-Monod Operon model for gene control uses

only negative control In the form of a repressor substance to keep a

gene turned off until its product is needed [13]. More recent research

has identifled some genes that are normally turned off until an

activator substance appears to turn on the transcription of the gene

[14]. Genes that require an external activator to become

transcriptionally active are said to be under positive control. In the
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L-arabinose gene-enzyme complex, the controlling gene. araC, codes for

a protein P1 that acts as a repressor for activity at both Pc and

PBAD. P1 binds at the operator site, araO, and has the effect of

turning off both Pc and PBAD. The inhibition of Pc is easily explained

biochemically, since the binding site of P1 to araO overlaps the

binding site of RNA Polymerase, RNAP, to Pc. RNAP is the enzyme which

is used to produce messenger RNA from the coding DNA which makes up

the gene complex. Thus, the repression of araC is due to competition

for binding on the DNA between P1 and RNAP. If P1 is bound at araO, it

prevents the attachment of RNAP with the consequent halt in

transcription of mRNA from the araC gene [15].

The repression of the activity of the B, A, and D genes is not

as easy to explain. PBAD and araO are far removed physically from each

other on the chromosome. The concept of competitive binding between

the repressor and RNAP probably does not apply. To date, there has

been no satisfactory explanation for the known repressive effect of P1

on PBAD [16].

The repressor protein P1 is in dynamic equilibrium with another

protein P2. P2 acts as an activator for PBAD. The effect of

L-arabinose as an inducer for the complex is twofold. First it tends

to free P1 from araO increasing binding of RNAP at the promoter sites.

Secondly, it shifts the equilibrium between P1 and P2 towards a higher

concentration of P2 [17]. Removal of the repressor from araO is not

enough to turn the B, A, and 0 genes on. The activator, P2, must bind

to the DNA in the region of PBAD (aral) before full transcription, and

- - IN
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consequent enzyme production occurs [7].

In addition to P2, another activator molecule is required for

full stimulation of the complex. Cyclic adenosine monophosphate (cAMP)

with its receptor protein (CRP) binds to the DNA near aral and appears

to aid the binding of P2 [18]. Recently, it has been proposed that

cAMIP-CRP and P2 function primarily together to aid in the binding of

RNAP to PBAD [19].

1.4 Alternative Models for Control of Genetic Systems

In the past, several models have been developed to describe the

control of genetic systems. Previous modeling efforts have been based

on the use of nonlinear chemical kinetic equations [20,21,22,23].

These equations have usually been linearized by some approximation and

then solved under the assumption of a steady state solution. For

example, Savageau has developed an approach based upon a power law

formulation of the kinetic equations connecting protein production and

resource utilization [20]. This power law formulation linearizes the

kinetic equations describing specific parameters through the use of

logarithms and a change of variables.

Alberghina's model for ribosome and protein synthesis, chromosome

replication and cell division in E. coli involved a set of

differential equations that were intermittently applied during the

growth phase of the bacteria (23].
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A recent and extensive example is Tapaswi's model for

transcription of genes and translation of mRNA to proteins during

embryogenesis [21]. Utilizing eight nonlinear synthesis reactions, he

modeled the production of the various forms of RNA and proteins

necessary for genetic activity during embryogenesis. Again, solution

of the equations involved a change of variables and linearization

around a steady state solution.

A set of linear equations were used in this study as opposed to

the chemical kinetic equations mentioned above. One reason for the use

of linear equations is that more standard analysis techniques exist

for linear systems,such as stability analysis, controllability

analysis and frequency analysis. [24]. Also, the results presented by

Haggerty [25] indicate that when the araC protein is the limiting

factor for the L-arabinose system, expression of PBAD is directly

proportional to the level of araC protein. This supports the selection

of a linear model for the system as a linear approach is suggested

when the experimental evidence suggests linearity [9].

A new approach to modeling genetic systems is represented by the

Threshold model of Tchuraev (21]. This model uses a unique set of

equations that represent concentrations of substances, activity of

genetic material and the interactive effects of regulatory substances

on the genetic material. The input variables of the model represent

either the presence or absence of a threshold dose of various

substances, thereby discretizing the genetic system. Using this

formulation, this model produced oscillatory system dynamics for the

i7
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operation of an arbitrary operon. A discrete model, such as this one,

was not chosen to represent the L-arabinose system because the

biological literature reports a constant steady state output of the

system and this discrete model shows a steady state oscillatory

behavior.

Discretizing of the genetic system has also been attempted by

other researchers. Neumann and Kreischer [26] and Bellmann et.al. [27]

have developed discrete models for the transcription of the DNA in

simple and more complex cells respectively. These models were not used

because the inputs to the biological system are continuous and not

discrete.

The research described here presents a different approach to the

modeling of a genetic system. Unlike previous models, the model

developed here attempts to describe a genetic system's behavior by

considering the interactions of a segment of DNA with the various

known regulatory substances, and then extrapolating the activity of

the DNA to the production of the desired protein. In this model, the

activity of different sites of the DNA are represented by states of

the system. A linear set of first order differential equations were

written to discribe the behavior of the system for this model. Unlike

previous models, this model allows the energy cost of genetic activity

to be directly related to the states of the system, and permits

comparisons of the cost to be easily made between different systems.

In addition, the use of this state space approach allows the

development of similar models of the same system using alternative

6
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methods of control.

I



Chapter 2

Model Development

2.1 Introduction

The basic simplifying premise followed in the model design was

that an inherently nonlinear biological system could be reasonably

approximated by a linear time invariant (LTI) representation. This

supposition was supported by Haggerty's finding of a linear

relationship between the concentration of the araC protein and the

activity of PBAD [25]. The intent of using an LTI model was to

facilitate system analysis and model manipulation. Silverman [28] has

reviewed the techniques that can be used to develop a state space

realization of a dynamic system. These methods, however, require an

initial description of the input/output relationship, in the form of a

system transfer function, for the formulation of the state space

realization. A system transfer function has not been formulated for

the L-arabinose system. This necessitates the formation of a state

space representation from the descriptive data found in the biological

literature.

The basic state space structure for a linear time invariant system

can be written as [24].

= AX + BU (2.1)

Y = CX + DU (2.2)

13
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where X = n x 1 vector of the states of the system

= n x 1 vector of the first derivatives of

the states of the system (dx / dt)

A = n x n matrix of constants describing the

relationships among the states of

the system

B = n x p matrix of constants describing the

relationships between the states of

the system and the inputs

U = p x I vector of the inputs to the system

Y = q x 1 vector of the outputs of the system

C = q x n matrix of constants describing the

relationships of the outputs of the

system to the states of the system

D = q x p matrix of constants describing the

relationships of the outputs of the

system to the inputs.

For the L-arabinose system, the following values are proposed; n equal

to eight, p equal to three and q equal to one. It is also proposed

that D is a zero matrix for this system as is discussed in the

development of the equations.
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For the L-arabinose complex, the following state variables were

chosen.

x = RNAP/PBAD associations

x2 = RNAP/Pc associations

x3 = Pl/araO associations

x4 = P2/araO associations

x5 = P2/aral associations

x6 = cAMP/CRP associations

x7 = concentration of P1

x8 = concentration of P2

The first six states represent the activities of the known regulatory

sites for the L-arabinose operon [4,5]. The last two states represent

the concentrations of the known regulatory proteins for the

L-arabinose operon [4,5].

The activity of araO was separated into two state variables

because the biological literature suggests the possibility of

different effects for repressor and activator binding to this site

[4,15,17]. The early research (reviewed in [4]) suggested that araO

was the site of repression for PBAD and Pc. Lee [15], using DNA

binding studies, found no direct evidence for araO repression of PBAD,

but did find evidence that the araO site was the site of repression of

Pc. Hahn and Schleif [17] proposed that P1 bound to araO represses

both PBAD and Pc, but that P2 bound to araO represses only Pc. In

addition, the presence of these two distinct states allowed for

clearer interrelationships between states to be expressed. It has also

.
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been recently reported that araO may actually be two distinct sites,

one for the binding of P1 and one for the binding of P2 [19]. The

state x6 represents the associations of the cAMP/CRP complex with

the DHA. The concentration of the free CRP and the interaction between

the free cAHIP and the CRP to form the complex were not modeled. It was

assumed that the concentration of the free CRP and the rate of

formation of the cAI1P/CRP complex were not limiting factors of the

system.

The following were chosen as inputs to the system (Figure 2.1).

u1 - concentration of L-arabinose

u2 - concentration of RNAP

u3 = concentration of cAMP

RNAP
cAIP +L-arabinose isomerase

L-arabinose---I

Block Diagram of L-arabinose System

Figure 2.1

For simplicity, the three inputs to the system were considered as

step inputs. This means that a constant supply of each input was

available to the cell. The inputs were normalized to 1.0 so that any

variation in the inputs could be handled by alterations to numbers in

the input matrix (B matrix).
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L-arabinose (ul) was input to the induced cell only. The lack

of L-arabinose input to the uninduced cell is represented by zeros in

the first column of the B matrix. The differences between the B

matrices represent the only differences in modeling between the

uninduced and induced systems. The transport of L-arabinose into the

cell as controlled by the araE and araF genes was not modeled in this

study.

RNAP was input to the system to provide for Pc activity. Since

RNAP activity is not specific for the L-arabinose system, it is

expected the RNAP will always be available in the cell. The araC gene

is autoregulated by its own product [29]. This autoregulation is

believed to be simply the result of competitive binding between P1 at

*araO and RNAP at Pc [15].

The third input to the system, u3, represented either an

internally produced or externally provided source of cAMP.

The specific activity of L-arabinose isomerase was chosen as the

output of the system (Figure 2.1). Of the three enzymes coded for by

the araBAD operon, L-arabinose isomerase is the enzyme most commonly

measured during experimentation. The units of specific activity are

micromoles of ribulose formed per hour per milligram of protein.

Differences in specific activity reflect differences in the amount of

L-arabinose isomerase made by the cell. Thus, for this model, the

specific acitvity of isomerase was assumed to be directly proportional

to the amount of enzyme present and a simple linear relationship was

assumed to exist between the activity of PBAD and the amount of
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isomerase produced. The output of the system was taken as a simple

multiple of the value of x, (RHAP/PBAD activity).

It is proposed that the equations representing the rates of

change of the system's states can be written as:

1l=-alx1+a25 (2.3)

2 =-a3x2-a4x3-a5x4+a6x6+ blu 2  (2.4)

3=_a 7x3 8x4 +a9 x7 (2.5)

4=-alox3-allx 4+al2x8  (2.6)

i5=-a13x3-a14x5+a15x6+a16x8 (2.7)

6=-a1 7xl-a 18x6+b2u3  (2.8)

x7=a19x2-a20x3-a21x7+a22x8 -b3ul (2.9)

8-a 23x4-a24x5+a25x7-a26x8+b4u1 (2.10)

Vith the output of the system written as:

y = cl1x (2.11)

Equations 2.3-2.11 represent the dynamical equations for the

L-arabinose gene - enzyme complex for an exponentially growing colony

of E. coli cells. In equation (2.3), the rate of binding of RNAP to

PBAD is assumed to be directly proportional to the amount of activator

protein bound to aral, as the data suggests that P2 binding to aral is

necessary for RNAP/PBAD complex formation [7,30]. Since the binding of

a molecule of RNAP to PBAD would prevent further binding of additional

molecules to the same site at the same time, the rate of association

is assumed to be inversely proportional to the number of associations.

This inverse proportionality represents a feedback loop on the rate of

change of the state and is also found in equations (2.4) - (2.8) where

U.
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each state is fed back upon itself.

The autoregulation of the C gene is represented in equation (2.4)

by the direct proportionality of dx2/dt to u2 and the inverse

proportionality to x3 and x4. Here, the data suggests that

both P1 and P2 bound to araO will prevent the binding of RNAP at Pc

(151. Evidence exists supporting stimulation of Pc activity by

cAMP(CRP) binding [29]. Thus, a term involving x, is also included

in equation (2.4). Because of this binding by P1 and P2 to araO, both

x3 and x4 must feed back on each other as well as upon

themselves (equations 2.5 and 2.6). Also present in equations (2.5)

and (2.6), are terms relating the rate of binding between P1 and araO

to the amount of PI (x7) and the rate of binding between P2 and

SaraO to the amount of P2 (x8).

In equation (2.7), the rate of binding of P2 to aral is dependant

upon the amount of P2 available and subject to the repressive effects

of araO activity [4]. Evidence indicates that cAMP(CRP) binding also

stimulates PBAD activity and a term involving x6 is placed in

equation (2.7) to account for this effect (31,32,33].

The rate of association of the cAMP(CRP) complex to the DNA is

directly related to the amount of free cAr1'P present (u3) in

*1 equation (2.8). Also in equation (2.8), the negative feedback of

x upon x6 is included to represent catabolite repression.

That is, the products of L-arabinose catabolism reduce the amount of

cA2iP available for binding.

an & M716
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The rate of change of the concentration of P1 (equation 2.9) is

directly proportional to the production of P1 (araC activity) and

inversely proportional to the consumption of P1 by binding at araO

(x3 activity). In equation (2.10), the rate of change of the

concentration of P2 is related to the binding of P2 to araO and aral.

Coefficients a21, a22, a25, and a26 represent the

dynamic equilibrium that exists between P1 and P2. Input of

L-arabinose shifts this equilibrium toward P2 as represented by the

negative coefficient on uI in equation (2.9) and the positive

coefficient on ul-in equation (2.10) [17].

Equations (2.3) - (2.11) can be rewritten in state space form as:

-a1 0 0 0 a2 0 0 0 0 0 0

0 -a3 -a4 -a5 0 a6 0 0 0 bI 0

0 0 -a7 -a8  0 0 a9 0 0 0 0

I X= 0 0 -alo-all 0 0 0 a12 + 0 0 0 (2.12)

0 0 -a13 0 -a14 a15 0 a16 0 0 0

-a17 0 0 0 0 -a 1 8 0 0 0 0 b2

0 alg-a20 0 0 0 -a21 a22 -b3 0 0

0 0 0 -a23-a24 0 a25-a22 b4 0 0

y= [c1  0 0 0 0 0 0 0] X (2.13)

where:

i=L[ 2XX;5XX 7 x T (2.14)

X=[Xlx 2x3x4x5x6x7x,]T  (2.15)

U = [ulu 2u3]T (2.16)

1/ l .
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The following values were then assumed for the coefficients in

the A, B and C matrices based in part upon the state relationships

mentioned earlier. Unity feedback

was assumed for xl, x2, x5 and x6. Coefficients of .5

were used in pairs to provide unity feedback for x3 and x4,

and unity consumption of x8, The catabolite repression of x6

was taken as 0.5 as the reported value of this repression is 50% [31].

This mathematical model (Figure 2.2) of the L-arabinose gene -

enzyme complex was then incorporated into a Fortran program for

computer simulation (Figure 2.3). A sixth order Runge-Kutta-Verner

routine was utilized for the solution of the eight simultaneous

differential equations. All computations were done to five decimal

.place accuracy. A graphics package was used to provide plots of the

response trajectory. The results for the uninduced and induced system

are shown in Figures 2.4 and 2.5.

2.2 Parameter Estimation

Utilizing the data of Sheppard [7], the output of the model was

compared to the reported values for L-arabinose isomerase specific

activity. Sheppard reported an uninduced level of isomerase specific

activity of less than or equal to 1.0. Following induction with a I%

arabinose solution (final concentration), a specific activity of 62

was reported. For model comparison purposes, the values of 1.0 and

60.0 were used for the uninduced and induced systems respectively.

That is, the expected ratio of specific activity between the induced

~ A. A
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and uninduced system was taken as 60:1.

To refine the estimates of the coefficients in the A and B

matrices, a least square error criterion was employed. Thus, the model

error was defined as:

e - (y expected - y computed)2  (2.17)

eu = (1.0 - yu)2 (2.18)

e, (60.0 - yl)2 (2.19)

The selection of values for a21, a22. a25, and

a26 was arbitrary. No data was found in the literature which could

be used to quantify the conversion reaction P1 - P2. Small numbers

were chosen because, in the uninduced cell, only a small amount of P2

is believed to be present [15]. These small numbers also made the

$system relatively insensitive to fluctuations of these values.

The coefficients in the B matrix were adjusted first. Since they

are both related to L-arabinose input levels, coefficients b3 and

b4 were adjusted together in the original system model (Figure

2.2) to reduce the error (el) in the induced system. Because

negative state values would represent unrealistic physiological

situations, an attempt was made to constrain the model to retain

positive state values throughout. A value for b3 and b4 of

3.65 was selected even though this caused the error in the induced

system to remain high (eI = 3028). This was done because, above

this value state x3 was driven negative. The value for b2 was

adjusted in the uninduced system to 3.5 which yielded an error

(eu) equal to .00001. The value for bI was left at 1.0 as
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changes to this value increased the error in the uninduced system.

These values for the B matrix parameters represented a starting

point for the development of the models of the system. For each model

developed, the parameters of the A matrix were optimized and then the

parameters of the B matrix were reexamined for optimization. For all

of the models, the output values at time = 600 seconds of the model

run were used to determine the level of error. This was sufficient to

allow the transient behavior of the system to dissappear and permit

only steady state values to be measured for goodness of fit.

This starting model (Figure 2.6) yielded the following results

upon computer simulation.

Yu = .99667 eu = .00001

Yi = 4.03935 e, = 3131.

Three main approaches were used to further develop the model. One

approach was based upon eigenvalue analysis. This method reduced the

number of parameters to be optimized from 26 to eight. For the second

approach, an unlimited model was developed that allowed the states of

the system to assume negative values. Lastly, two models were

developed that limited the states of the system to non-negative

values. The latter two models differed only in the manner in which the

coefficients were optimized.

For all of the models, the initial step was a sensitivity

analysis on the parameters of the A matrix. Equal percentage changes

were made in each parameter while holding all of the other parameters

constant, and the percent changes in the outputs of the uninduced and
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induced system were noted. After the sensitivity analysis, the

following steps were used to optimize the model.

1) Select the parameters with the largest

percentage increases in the induced

output (or one that increases the

induced output while decreasing the

uninduced output)

2) Optimize with respect to eI. (ie. use the

parameters selected in (1) to increase yl)

3) Continue optimizing all parameters

with respect to e, or eu as

necessary to produce an output ratio

.of 60:1 between the induced and uninduced

system.

2.3 Eigenvalue Model Development:GENE1/2

The eigenvalues of the LTI model represent the natural modes of

the system and can be derived from the A matrix of equation 2.1 [24].

The eigenvalues are found by taking the determinant of the matrix

(sI-A) and setting it equal to zero.

det (sI-A) = 0 (2.20)

The eigenvalues are the roots of this equation.

The state space model as in Figure 2.6, was transformed into the

Real Jordan Form of Figure 2.7. In this form, the parameters of the A

riatrix are now the eigenvalues of the system. The equations relating
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the original states of the system to the transformed states are as

follows:

Let X = Transformed state vector

Then X = TX where T= Transformation matrix (2.21)

. T-1 where T-1 = Inverse of T (2.22)

X = [T-1 AT]7 + [T-1 B]U (2.23)

y = [CT]7 (2.24)

Using this form of the dynamical equations reduced the number of

parameters of the A matrix from 26 to eight. This form also has the

property that state dependencies are reduced. The transformed states

are now dependent only upon their own eigenvalues, and hence,

independant of the other states. This eigenvalue model is labeled as

"GENEI/2 with GENEl representing the uninduced system and GENE2

representing the induced system. The real and imaginary parts of the

three complex eigenvalues were treated separately for the sensitivity

analysis and optimization. The sensitivity analysis was done on these

eigenvalues and the results are presented in Table 2.1.

In doing the sensitivity analysis, it was noted that the last

eigenvalue (-1.0) had no effect on the system output. This fact is

also shown in the transformed C matrix which puts no contribution from

the eighth state into the output. The sensitivity analysis also

indicated that all of the eigenvalues have a greater effect on the

uninduced output than on the induced output, which made it difficult

to increase the output ratio (about 4:1 initially) to the desired

60:1. The imaginary part of the second eigenvalue was adjusted first
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because it had the greatest influence upon the induced output. Results

of optimizing EV2(IMM) with respect to e, are presented in Table

2.2. The other eigenvalues were similarly adjusted, at times with

respect to both eu and eI in order to increase the output

ratio toward 60:1. The results of these adjustments are presented with

selected values in Table 2.3. Note that the fourth eigenvalue (REL and

I~iM parts) was readjusted and the remaining eigenvalues checked for

further optimization.

The final results yielded an output ratio of 65:1 with e

equal to .12004 and eI equal to 295.

Following the optimization of the eigenvalues, the system was

U inversely transformed to return to the states of the original system.

IThe resulting new A matrix for the state space model is shown in

Figure 2.8.

This model was then run for both non limited and limited state

values. That is, the model was run letting the states of the system

assume negative values and then run under the condition that the model

restricted the states of the system to non negative values. Results of

these runs are presented in Table 2.4. The resulting output ratio for

the non limited run was 26:1. The difference probably coming from

round off error during the computer transformation between the system

forms. The optimization of EV4(REL) in Table 2.3 reveals the

sensitivity of the model to changes in the third decimal place. This

sensitivity could have caused the differences noted between the two

state space forms.
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The coefficients of the B matrix were then readjusted in an

attempt to optimize the system. Table 2.5 shows the result of this

optimization.

2.4 Non Limited States i1,odel Development:GENElC/2C

The second method used in model development involved the

formation of a model that allowed the state variables to assume both

positive and negative values (GENElC/2C). This method produced, like

the eigenvalue model, a truly linear model. Again, the starting point

was the state space model of Figure 2.6.

A sensitivity analysis as described earlier was run on each of

the parameters of the A matrix (Table 2.6). Several constants were

Ifound that when changed caused an increase in the induced output while

causing a decrease in the uninduced output. In addition, the system

was found to be very sensitive to changes in parameters a7 and

a . A fifty percent increase in a8 and a fifty percent

reduction in a7 caused the system response to exceed the limits of

the computer program. Again, the system showed relative insensitivity

to the parameters involved in the P1 to P2 conversion (a21.

a22' a25 and a26). Hence, these parameters were not

changed during the optimization procedure.

In the parameter optimization procedure, the value of the

uninduced output was not permitted to fall below zero during

optimization of a coefficient with respect to the induced output. All

other possible state excursions were permitted. During the
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optimization, one parameter (a4) was found to yeild the smallest

eI when its value was zero.

Optimization of the parameters yielded the values found in Table

2.7, and the following model response.

= 33017 eu = .02884

Yl = 59.99256 e, = .00006

Lastly, the parameters of the B matrix were readjusted as in

Table 2.8, yeilding the following improved system response.

Yu = .99946 eu = .00000

Yl = 60.00013 e, = .00000

2.5 Limited Model Development:GEfJE3A/3B;GEIEOA/OB

The need for a limited model arose because the states of the

system as defined have no physiological meaning when they are

negative. The two previous models, GENE1/2 and GenelC/2C, can be

properly termed linear mathematical models. GENEl/2 was developed

based upon eigenvalue analysis and GENEIC/2C was developed based upon

coefficient optimization. In both of these models, the state values

were allowed to take on negative values in order to best fit the

output criteria. In order to produce a model that better fit the

physiological situation, two limited models were developed. In both,

the states were reset to zero if their calculated value attempted to

go negative, and thus their state values were limited to non negative

values only. Each state value was calculated at one second intervals

by the program.
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Two different approaches were used to develop the limited models.

In one, GENE3A/3B, the B matrix parameters bI and b2 were

readjusted after a sensitivity analysis was performed. The results of

their analysis and optimization are shown in Table 2.9, along with the

resulting system response. B matrix parameters b3 and b4 were

left for optimization after adjustments were made to the A matrix

parameters.

A sensitivity analysis was then done on the A matrix parameters.

The results (Table 2.10), were very similar to those done for the non

limited model. This is to be expected as most state values remained

positive and were thus unaffected by the state limiter. Some

coefficients, though, did differ significantly in their sensitivities

3between models (a12 for example). For optimization, three major

classes of coefficients were initially optimized; then, each

coefficient was optimized individually. These three classes were those

coefficients involved with state feedback, output production and

activator concentration. The results of the optimization are presented

in Table 2.11.

Lastly, coefficients b3 (-4.47) and b (+4.47) were

optimized resulting in the following system performance.

YU = 1.00235 eu = .00001

Y1 =60.02403 eI = .00058

GEINEOA/03, the final model developed, utilized the same

sensitivity analysis as GENE3A/3B. In the optimization of this model,

an attempt was'made to provide satisfactory system performance by
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adjusting only selected coefficients. Those coefficients representing

state feedback, repression and competition were not adjusted in the

development of GENEOA/03. They were held constant in an attempt to

make the model physiologically simple and to see what pattern might

develop with the remaining coefficients. For this procedure, the

coefficients were grouped and optimized as in Table 2.12. Note that

only five coefficients were adjusted, along with the B matrix

parameters, in order to optimize the system. A significant difference

in their optimization was that the adjustments were done based upon

the output ratio of 60:1, reported by Sheppard, between the induced

and uninduced system, and not upon the actual outputs. Once a ratio of

about 60:1 was obtained, the actual outputs were then scaled by

Itchanging the value of c, in the output matrix. The resulting model

yielded the following values.

Y= 1.00235 eu = .00001

Yl = 60.02403 eI = .00058

r.d
.4%
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-1 0 0 0 1 0 0 0 0 0 0

0 -1 -. 5 -. 5 0 1 0 0 0 1 0

0 0 -. 5 -. S 0 0 1 0 0 0 0

= 0 -.5 -.5 0 0 0 1 X+ 0 0 0

0 0 -1 0 -1 1 0 1 0 0 0

-.5 0 0 0 0 -1 0 0 0 0 1

0 1 -1 0 0 0-.001 .005 1 0 0

0 0 0 -.5 -.5 0 .001-.005 1 0 0

Y [1 0 0 0 0 0 0 0]x

Original System Model

Figure 2.2
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.'*joDi'AIV LI lEM%30
// ExrC rLVrcv77

/SYSLIB DD
-,D

DD
A'DO D)SN.SYSI INS9L.DOUBLE99DIS~USR

//CO.SOURCE DD

C *
C * CERE-ENZYIWE 811NULATION*
C *
C *THIS FROCRAPI SIMLATES THlE OPERATION Or IRE L-
C *ARADIIIOSK CEDE-ENZYUE9 COMSPEX. tINC COPIPLEX CONSIffrS*
C *OF THREE GIRUCMtJAL, CERES AND ONE CONTROL CENE. IT *

AC *1S RECULATED BY mo111 A REPRESSOR (PI) AND AN ACT- *
C *IVATOR (P2) rROTEIN AND IS INDUCED flY THE SUGAR L- *
C *AVADIIIOSE. A WffATE PACE REPRESENTATION IS USED TO *
C *NIATREIATICALLY SIMLATE IHIS GENE-ENZYME COMPLEX. *
C *
C *STATE VARIABLES:
C * X(I)sPNAP'I'DAD ASSOCIATIONS
C * X(2)uRWAP/PC ASSOCIATIONS
C * X(3)vPI/AI1AO ASSOCIATIONS
C * X(4)uP2/AUAO ASSOCIATIONS*
C * x(b)*02/AltAI ASSOCIATIONS*
C * X(G)zCAIIP(CAP)/CRn' ASSOCIATIONS
C * X(7)zCONICEH'RATIOI OF PI
C * X(B)sCONCENTRATION OF P2
C **
C *SYSTEII INPUTS:*
C ueCOHCERuIATION OF L-ARABINOSE
C * U2sCOCEIATION oF DNAP
C * USsCOIICEN'tRATION OF CAMP?
C *

C
C INITIALIZATIONV
C
C
C DECLARATIONS
C

EXTERNAL PCH
INTECER, NIINW,INIT
REAL*8 W(59,30)
REAL *9 C(24)
REAI-*S N(S) ,XPRIPM(S)
IIEAL*B COST
REAL TIIME(GOOP,ENZY(G@S)
REAL*S T.TENDZ,Y
COSTO A

C
C LOOP FOR COEFFICIENT VARIATION
C

DO 100 KwI.I,I
C

Simulation Program

Figure 2.3
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Figure 2.3 (Continued)

c str INITIAL VALUES

Y=O.o

t0 II'rJ INITIAL CONDITIONS.

X12)*9.9
X4120sO.0

1115)29.0
XfG)3O.0

riflir 62
62 FoPiiAr c+ ,GGoIXGe' IOX,'X7 .@,GIx.S' 91'?' .OX.'Y' .9X.6A

C SET LOUP FORl SirnJATIoN

CALL VVEIIE (II.FCN, T*X9TEIID,..0,IRfIT,CsNW,W,IER)
ID) 66 Jut 0

Env IF
66 COIIUE

Yz U1.4672*XtI1
ElITYI I Y

DO FUNtIAT (I o(rIO .,2X),r.gr.2.s.52xFr0.9)
90 CONrirnE

C CALCULATE COST FUNCTion

a 1(T)**24X(S)**2
runi 95,cosr

95 FttlAr (',I,'COSTvg * ',fIU.

too CO11t1NUE

C CRAI'IICS ROUTINES

CI.FAUll (.9)
c4I.I. AXIS (I.U,t.8,'SFICIIC ACTIVITY' ,-17,6.90.,fl ...
CALL AXIS (6.5,t.S'TNU -

Li saiA=
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Figure 2.3 (Continued)

CAIL IYEWPEN (2)
CALL LINE (ENZY,6.5,-I .,TIRIE,-O?.5.25. ,200,,@
CALL PLOTE2
SIrop
END

C
C SUBROUTINE FOR DIFFERENTIAL EQUATION SOLUTION
C

SUBRlOUTINE FGW (N,TX.XFRINE)
REAL*6 X(P) ,XPRIHE(N)
REAL*8 T,TEMD
COIJON A
INTEGER N

xrfliNE()s3-X(J.*X()+I .*X()
XFnIfIE(6)w-.3*X(I)-.5X()+I ,*XB
XrnhrIE(7)sX-X(3)-).O*X(E)+t.@0*X(I

RETURN
END
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-0.536 -0.546 0.220 0.068 0.541 0.703 -0.101 -0.489
* -- 0.316 -0.194 -0.058 -0.262 0.413 -0*049 0.191 0.127

-0.131 -09354 -D.204 -0.140 0.039 -0.373 0.354 0.33?
-0.035 -0.307 -0.033 -0.296 0.296 0.064 -0.073 -0.006
-0.351 -0.101 -0.091 0 442 -0.292 -0.006 0.119 0.122
-0.048 -0.139 -0.223 0.014 -0.212 -0.536 0.273 0.444
0.234 0.378 -0:162 -0.037 -0.171 -0.017 -0.063 0.065

-0.07? -0.037 -0.024 0.102 -0.161 -0.229 0.108 0.166

New A Matrix for Elgenvalue Model

Figure 2.8
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Table 2.1

GEriEl /2

Elgenvalue Sensitivity

Elgenvalue Value %oChange Y' U ' Y YU %

EVI -2.352 +30 .7810 3.79748 20.8 6.0

(-1.809) -1.266 -30 1.37858 4.48462 38.6 11.1

EV2(REL) -.047 +30 .97513 4.06638 1.97 .7

(-.067) -.087 -30 1.01326 4.00789 1.86 .7

EV2(14M) 1.387 +30 1.25636 3.48932 26.3 13.6

4(1.067) .747 -30 2.21534 5.02592 122.7 24.5

~EV3(REL) -.911 +30 .54316 3.73432 45.4 7.5

(-.701) -.491 -30 1.73999 4.43286 74.9 9.8

EV3(IfIl) .781 +30 1.17891 3.94339 18.5 2.3

(.601) .421 -30 .59353 4.05764 40.3 .5

EV4(REL) -.430 +30 .97184 3.99263 2.3 1.1

(-.331) -.232 -30 1.07783 4.11185 8.4 1.3

EV4(IIIM) 1.119 +30 1.56751 4.27768 57.6 5.9

(.861) .603 -30 -.00945 3.58947 101 11.1
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Table 2.2

GENEI/2

Eigenvalue Optimization (EV3)

Parameter (EV3) eU el Y YI

1.067 .00003 3131. .99472 4.03792

.067 2324. 11.78793

.077 2210. 12.97969

.087 2145. 13.67804

.097 2113. 14.02753

.150 2179. 13.31588

.120 2112. 14.04074

.110 2103. 14.03859

.107 2103.52 14.13581

.109 2103.52 14.13580

.108 175. 2103.45 14.25475 14.13658

N

i4P
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Table 2.3

GENE1/2

Eigenvalue Optimization

Parameter eu el I YI

EV3(DIMI) .5 170. 2101. 14.06000 14.16166

.45 167. 2101. 13.93681 14.16138

.40 163. 2102. 13.79155 14.15044

EV2(REL) -.005 157. 1160. 13.53817 25.92913

-.010 150. 1201. 13.25876 25.34309

-.015 159. 1257. 13.61296 24.53841

EV4(IMM) .06 64.

.10 61.9 1379. 3.86801 22.85656

.16 63.

EV4(REL) -.135 .02650 .83721

-.137 .00043 1635. .97936 19.56301

-.140 .03613 1.19007

EVi -.04 31. 65.62150

-.045 1229. .15070 36.06218 60.38821

-.06 101. 49.92154

EV4(IMM) .005 62. 8.89327

.019 29. 215. 6.40233 45.31187

.020 29. 6.47619

EV4(REL) -.03 387. -18.68295

-.044 .12004 295. .65353 42.80333

-.045 .48675 280. 1.69767 43.25549
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Table 2.4

GEINE1 /2

Eigenvalue Model

Non Limited Run Limited Run

Uninduced Induced Uninduced Induced

xi 1.68092 44.32712 18.58793 34.59979

X2 -20.28888 -22.09476 0 0

X3 1.54579 -32. 72974 6.33231 0

X4 -46.65178 13.51421 0 34.17903

X5 -67.90229 -9.58770 0 30.51621

*X6 27.10089 31.80638 16.59302 33.68437

X7 23.53632 21.07048 28.41276 0

X3 -26.01703 -6.01371 0 49.35741

Y 1.68092 44.32712 18.58793 34.59979

e .46365 245. 309. 645.
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Table 2.5

GENE 1/2

B Parameter Readjustment

Parameter eu el Yu Yi

bi. 1.03 .02646 1.16266

1.04 .00010 267. .98991 43.63606

1.05 .03343 .81716

b2 3.49 .00414 .93568

3.50 .00010 267. .98984 43.63606

3.51 .00194 1.04400

b3& 5.04 .01522 59.87664

b4 5.05 .00004 59.99347

5. 6 .01217 60.11030

6&wW-~2ff*v~ .



Table 2.6

GENEl C/2C

r~jl Parameter Sensitivity

Parameter %Change Yu Yi 7%Yu %Yi

al -.5 -50 1.70898 6.92624 71.5 71.5

-1.5 +50 .70346 2.85102 29.4 29.4

a2 +.5 -50 .54355 2.20295 45.5 45.5

+1.5 +50 1.38018 5.59366 38.5 38.5

a3 -.5 -50 .61821 3.81436 37.9 5.6

-1.5 +50 1.18577 4.15177 18.9 2.8

a4 -.25 -50 .84505 4.13333 15.2 2.3

-.75 +50 1.10481 3.97226 10.8 1.7

a5 -.25 -50 1.04059 3.89672 4.4 3.5

-.75 +50 .95612 4.17070 4.0 3.3

a6 +.5 -50 1.23872 4.15872 24.3 3.0

+1.5 +50 .73338 3.90958 26.4 3.2

a7 -.25 -50 --- --- -

-.75 +50 .99729 4.03896 .06 0

-.40 -20 .99641 4.03950 .03 0

-.35 -30 .68847 4.15257 31.0 2.8

--. 3375 -32.5 -6.90601 7.29134 793 80.5

a8 -.25 -50 .99687 4.03867 .02 0

-.75 +50 ------ -- - -

-.675 +35 2.07047 4.76635 107.7 18.0

-.70 +40 129.73193 53.70491 13016 1329

,Z4%=
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Table 2.6 (Continued)

Parameter %Change Yu Yi /Yu %Yi

a9 +.5 -50 .99750 4.03993 .08 .01

+1.5 +50 .99639 4.03915 .02 0

alO -.25 -50 .62400 4.27035 37.4 5.7

-.75 +50 1.37033 3.80772 37.5 5.7

all -.25 -50 1.13942 3.57682 14.3 11.5

-.75 +50 .88590 4.39824 11.1 8.9

a12 +.5 -50 1.39424 4.31599 39.9 6.8

+1.5 +50 -.42201 1.73232 142 57.1

a13 -.5 -50 1.74875 3.57314 75.5 11.5

-1.5 +50 .24358 4.50617 75.6 11.5

fa14 -.5 -50 1.32976 5.38874 33.4 33.4

-1.5 +50 .79707 3.23040 20.0 20.0

a15 +.5 -50 .13741 3.61559 86.2 10.5

+1.5 +50 1.66469 4.36880 67.0 8.2

a16 +.5 -50 .71037 3.84013 28.7 4.9

+1.5 +50 1.21932 4.19428 22.3 3.8

a17 -.25 -50 1.08711 4.40589 9.0 9.0

-.75 +50 .92012 3.72911 7.7 7.7

a18 -.5 -50 1.85306 4.46169 85.9 10.5

-1.5 +50 .64415 3.86550 35.4 4.3

a19 +.5 -50 1.29920 4.21920 30.4 4.5

+1.5 +50 .78045 3.91081 21.7 3.2
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Table 2.6 (Continued)

Parameter %Change Yu Yi /Yu ,oYi

a20 -.5 -50 .61723 4.27455 38.1 5.8

-1.5 +50 1.18591 3.92204 19.0 2.9

a21 -.01 +900 .99817 4.04039 .15 .03

-.005 +40 .99734 4.03981 .07 .01

a22 +.001 -80 .99734 4.03981 .07 .01

+.01 +100 .99582 4.03876 .09 .01

a23 -.25 -50 .74606 4.85129 25.1 20.1

-.75 +50 1.12208 3.63302 12.6 10.1

a24 -.25 -50 1.19560 4.84560 20.0 20.0

-.75 -50 .85449 3.46312 14.3 14.3

'a25 +.005 +40 .99933 4.04120 .27 .05

+.01 +900 1.00268 4.04350 .60 .10

a26 -.001 -80 .99933 4.04120 .27 .05

-.01 +100 .99334 4.03703 .33 .06
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Table 2.7

GE!JE1C/2C

Parameter Optimization

Parameter e ue. Yu Yi

a13 -1.65 .96539 .01745

-1.66 .99525 3062. .00238 4.65569

-1.67 1.02551 -.01270

al -.47 .47634 1.69017

-.48 .00609 2482. 1.07802 10.17830

-.49 .12689 .64378

a2 +1.09 2401. 10.99756

4+1.10 .39057 2350. .37505 11.52105

+1.11 2374. 11.27536

a3 -1.58 .00006 .99219

-1.59 .00001 2501. 1.00322 9.98774

-1.60 .00020 1.01416

a4 -.01 .58430 2361. .23560 11.40848

0.0 .61798 2357. .21388 11.44856

a5 -1.37 2235. 12.72093

-1.38 .63843 2233. .20098 12.73570

-1.39 2244. 12.62639

a6 +.97 .65696 .18947

+.98 .59221 2220. .23045 12.87642

+.99 .60006 .22536
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Table 2.7 (Continued)

Parameter eu ei YU Yi

a7 -.49 1.58304 2127. -.25819 13.87986

-.50 .59221 2220. .23045 12.87642

-.51 2239. 12.67817

a8 -.48 .77055 .12219

-.49 .39472 2259. .37174 12.46951

-.50 .59221 .23045

a9 +1.10 .36549 .39544

+1.11 .27693 2269. .47376 12.36558

+1.12 .27707 .47363

alO -.48 1.0638 -.03141

-.49 .65532 2212. .19048 12.96163

-.50 .27693 2269. .47376 12.36558

a12 +.53 .00025 1.01573

+.54 .00019 2363. .98632 11.37932

+.55 .00179 .95773

a17 -.06 2155. 13.57247

-.07 .02124 2149. 1.14575 13.63696

-.08 2156. 13.56213

a23 -.05 1902. 16.38507

-.02 .93986 1875. .03054 16.68826

-. 01 1.01867 1866. -. 00929 16.79495



Table 2.7 (Continued)

Parameter eu ei Yu Yi

a24 -.15 58. 52.34731

-.13 .79301 .13846 .10949 59.62790

-.12 16. 64.08450

a19 +.19 .00000 13.28524 1.00203 56.35511

a20 -.35 .01759 59.86731

-.34 .22992 .00001 .52051 60.00359

-.33 .02139 60.14625

a18 -.57 .00061 .97527

-.56 .00004 .00849 .99398 59.90786

-.55 .00018 1.01335

,1614 -.99 .00002 .00054 .99512 59.97673

a15 +.94 .00001 59.99666

+.93 .01419 .00000 .88087 59.99999

+.92 .00001 60.00332

all -.40 .00018 .98676

P.-.39 .00000 .40575 .99909 59.36302

-.38 .00014 1.01180

a16 +.61 .00012 60.01079

+.62 .02884 .00006 .83017 59.99256

+.63 .00065 59.97441
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Table 2.8

GENEl C/2C

B Matrix Optimization

Parameter eu ei Yu Yi

b2 4.1 .00001 .02571 .99797 60.16035

bl .99 .00000 .02619 .99946 60.16184

H3 -3.52 .00000 60.00013

1*%
W&'Si

MS 1.a q
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Table 2.9

GENE3A/3B

B Matrix Parameter Sensitivity

Nominal Values: YU .51989 YI = 3.82788

Parameter %Change Yu Yi /Yu ZYi

b1 1.5 +50 .47495 3.81210 8.6 .4

.5 -50 .56484 3.84365 8.6 .4

b2  1.75 -50 .21500 3.04453 58.6 20.5

5.25 +50 .82478 4.60902 58.6 20.4

b3  -1.825 -50 3.73621 2.4

-5.475 +50 3.88546 1.5

b4  1.825 -50 2.73683 28.5

5.475 +50 4.91888 28.5

Parameter Optimization

Parameter eu ei Yu Yi

b2  6.24 .00001 .99726

6.25 .00000 .99901

6.26 .00000 3029. 1.00075 4.95793

b. ,99 .00000 1.00165

1.01 .00000 3029. .99985 4.95621

1.02 .00000 .99895

System Performance

YU = .99985 eu = .00000

Y= , 4.95621 eI = 3029.
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Table 2.10

GENE3A/38

Parameter Sensitivity

Nominal Values: Y U .99935 YI = 4.95621

Parameter %Change Yu Yi -,Yu %Yi

al -.5 -50 1.83923 6.26798 84.0 66.8

-1.5 +50 .68670 3.49810 31.3 29.4

a a2  +5 -50 .52268 2.70293 47.7 45.5

+1.5 +50 1.43720 6.82835 43.7 37.8

a3  -.5 -50 .67290 4.4"a21 32.7 9.2

-1.5 +50 1.70687 5.1007 70.7 2.9

,a 4  -. 25 -50 .(36906 4.9569? 13.1 0

-.75 +50 1.36739 4.9557) 36.6 0

a5 -.25 -50 1.02260 4.35385 2.3 2.1

-.76 +50 .97804 5.05247 2.2 1.9

a6 +.5 -50 2.13708 5.11794 113.7 3.3

+1.5 +50 .73502 4.63918 26.5 6.4

a7 -.25 -50 1.12003 4.95620 12.0 0

-.75 +50 1.00151 4.95621 .2 0

a3  -.25 -50 .99976 4.95572 0 0

-.75 +50 .99996 4.95670 0 0

a9 +.5 -50 1.00244 4.95716 .3 0

+1.5 +50 .99904 4.95589 .1 0

a10 -.25 -50 .93620 4.95792 6.4 0

-.75 +50 1.31124 4.95450 31.1 0
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Table 2.10 (Continued)

Parameter %/Change Yu Yi %Yu 'Yi

a11 -.25 -50 1.04713 4.62450 4.7 6.7

-.75 +50 .95525 5.21359 4.5 5.2

a12 +.5 -50 1.01239 5.41736 1.3 9.3

+1.5 +50 .99104 4.74667 .9 4.2

a13 -,5 -50 2.42318 4.95271 142.4 .1

-1.5 +50 .35914 4.95971 64.1 .1

a14  - 5 -50 1.35708 6.61192 35.7 33.4

-1.5 +50 .88336 3.96367 11.7 20.0

a15 +.5 -50 .18543 3.87358 81.5 21.8

+1.5 +50 2.61971 5.79790 162.0 17.0

+.5 -50 .98461 4.62410 1.5 6.7

+1.5 +50 1.00768 5.21450 .8 5.2

a17 -.25 -50 1.04536 5.40587 4.6 9.1

-.75 +50 .95813 4.55223 4.2 8.2

a18 - 5 -50 2.02729 6.03514 102.8 21.8

-1.5 +50 .65533 4.45965 34.5 10.0

a19 +.5 -50 2.14731 5.12187 114.8 3.3

+1.5 +50 .81323 4.69451 18.7 5.3

a20 -,5 -50 .67256 4.95799 32.7 0

-1.5 +50 1.70623 4.95532 70.6 0

a23 -.25 -50 .81060 5.54144 18.9 11.8

-.75 +50 1.27538 4.66471 27.6 5.9

a24 -. 25 -50 1.47985 5.94741 48.0 20.0

-.75 -50 .30441 4.24912 19.5 14.3
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Table 2.11

GE[JE3A/3B

Parameter Optimization

State Feedback Coefficients (SFC)
(a a, -,'7, a., a10  a a

Output 4~oduiction Coefficient s"a 18

Activatgr C~IIIcentration Coefficients (ACC)
(a a24

ParametW e U e1 I Uy

SFC -.4 .16165 2295. 1.40206 12.08762

OPC 2.5 1.68605 1497. 2.29848 21.30729

ACC -.13 1.00000 3.12039 0.00000 61.76646

a 5  -.34 .74680 1498. 1.86418 21.28918

-.4 32 .01259 1498. 1.11219 21.29160

a9 .3 1.19399 1.92534 2.09270 61.38756

a17 -".65 .05643 50.02587 1.23765 52.92710

a16 2.1 .02442 127. .84372 48.72525

6 .9 .00510 127. 1.07141 48.72179

- - -' - ~ *"- ~ ~ - '6
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Table 2.12

GENJEOA/03

Coefficient Classes with Optimized Values

State Feedback Repression Competition

a1 =-1.0 a4 =-.5 a23 5

a = -1.0 a -5 = a 24 -5

a14 = -1.0 a1 3= -1.0

a 18= -1.0 Production

a7 =-.5 Catabolite Repression a19 = 1.0

a8 =-.5 a17 =-5 a2=1.0

a 10M --

a11
= -.5

Variable Dependencies

a2 =1.0

a6 = .1

a9 = .9

a12= 2.5

8 15=- .4

a16= 5.2
1.0



Chapter 3

Model Discrimination

3.1 Introduction

Four models of the L-arabinose system were developed based upon

state space representation. It was decided to use only one of the

models for further experimentation. Extrinsic parameters were used to

discriminate among the models and select the model of best fit. In

extrinsic parameter discrimination one uses criteria, other than those

used for model development to test the performance of each model [8].

The model that best satisfies the criteria is then chosen as the model

.pf best fit. The following parameters were selected as the criteria

for discrimination.

1) Removal of catabolite repression in the induced system.

2) Induced response to a 0.4% arabinose input.

3) Induced response to one tenth the normal cAMP input.

4) The ratio in the induced system of xI to x2 '

5) The induced response when the cAHP input is first eliminated then

increased to twice its normal level.

6) The response of the uninduced system when x2 is set to zero.

7) The ten percent settling time in the induced system.

8) The difference between x4 and x5 in the induced system.

9) The number of negative or zero state values in the uninduced and

57
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induced system.

These criteria include both input/output performance measures and

physiologically specified state relationships. Thus, both the

mathematical behavior of the model and the physiological similarity of

the model were considered in the discrimination procedure.

3.11 Removal of Catabolite Repression in the Induced System

Catabolite repression, the repressive effect of the products of

the enzyme degradation of L-arabinose, was simulated by an x1 term

in the equation for x6 (equation 2.8). Removal of catabolite

repression was accomplished by simply deleting this term. In the

literature, it is reported that the induced system response doubles

when catabolite repression is removed [31]. The expected result for

-. the induced output was therefore taken as twice the normal induced

output.

3.12 Induced Response to a 0.4% Arabinose Input

Sheppard's data, which was derived from bacteria growing in a 1%

arabinose media, was used for model development [7]. The data for

bacteria grown in a 0.4% arabinose media was obtained from work

reported by Katz [31]. In this data, the induced system output is

given for three separate bacterial cultures. The average value, 24.5,

was taken as the expected value for the models. To simulate a 0.4%

arabinose input in the model, the 0 matrix parameters, b3 and

b4, were reduced to 40.. of their normal value.
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3.13 Induced Response to One Tenth the Normal cAMP Input

*! Decreasing the amount of cAMP added to an induced culture causes

a decrease in L-arabinose isomerase production [33]. Data suggests

that a 90% reduction in the concentration of added cAMP causes a 60%

reduction in the induced output of enzyme [33]. Thus, for an input of

one tenth of the normal amount of cAMP, with all other parameters held

constant, the expected value of the output was taken as 40% of the

normal induced output.

.: 3.14 The x1:X2 Ratio in the Induced System

Casadaban [29] reports that in the normal induced system the

1 level of Pc activity is only about 3% that of PBAD activity. This

translates into a ratio of 33.3:1 for xl:x 2 activity in the

models.

3.15 Induced Response to Zero Then 2x cAMP Input

Another study using various cAMP inputs yields another parameter

for model discrimination. In this study, the amount of cAMP added to

the bacterial culture was reduced to zero and then increased to twice

the normal input [31]. The bacteria responded with an output 2.28

times as great in the 2x cAMP input case than in the zero cANP input

case. Each model was similarly tested. The output value, produced when

no cA&.P was input to the model, was multiplied by 2.28 to yield the
Vexpected value of the model when twice the normal cAiviP was input to
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the system. The changes to the cAHP inputs were accomplished by

changing coefficient b2 in the input matrix.

3.16 Uninduced Response When x2=0

The setting of state x2 equal to zero (ie. Let x2=0 in

the system equation 2.4) simulates a non functional C gene in the

L-arabinose system. The literature reports that a non functional C

gene in the uninduced culture results in approximately normal

uninduced output [7]. Therefore, a value of 1.0 was assumed for the

expected output when x2 was set to zero in the uninduced system.

3.17 The Ten Percent Settling Time in the Induced System

Experience with the L-arabinose system has shown that the

production of L-arabinose isomerase proceeds at a constant rate [31].

Thus, the model in the induced state should have transient behavior

that dies out rapidly yielding a steady state production of the

enzyme. The earliest sample time for data collection reported was five

minutes after the onset of induction. Thus, the expected value for the

10% settling time was taken as 300 seconds. A 10% settling time, the

time it takes the output to settle to and remain within 10% of its

steady state value, was chosen because this amount of variation is

possible in the experimental measurements [31].

.. ... . ., - -.o , - ,., - '-,'-'...'..-o,. ' ..- i, ' ', # 3
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3.18 The x4/x5 Difference in the Induced System

A recent study has suggested that the activator,P2, shows no

preference in binding to either aral or araO (16,19]. Thus states

x and x5 could be expected to have equal values. Hence, the

difference between x4 and x5 in the steady state of the

induced gene can be expected to be zero.

3.19 Number of Negative or Zero State Values ; Induced and Uninduced

Lastly, the definition of the system's states suggests that there

should be no negative state values as those would represent a negative

activity or negative concentration. Similarly, zero values in those

models with a state limiter would represent negative states and

Itherefore violate the state definition. Thus, in comparing the models,

the number of negative or zero states was considered as a measure of

the deviation from the expected value of zero in both the uninduced

and induced systems.

3.2 Evaluation of the Models

Selected characteristics for each of the models developed are

listed in Tables 3.1,3.2,3.3 and 3.4. Steady state values are

presented for (a) the uninduced system, (b) the normal induced system

(i arabinose) and (c) the system induced with 0.4% arabinose. Also

found in these tables are selected transient behavior characteristics

for the model. Note that all models eventually settle to steady state

operation except GENE3A/3B. The oscillatory behavior of this model was
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not detected until model development was complete.

In evaluating the fit of the models to the expected values of the

extrinsic parameters, the method of residual analysis was used [3]. A

residual can be defined as follows.

Residual =lExpected value - Computed valuel

In some cases, the actual residual may not yield as much information

as the percent error which can be defined as follows.

Percent error = (Residual/Expected value) x 100

The residual analyses of the four models are presented in Tables 3.5,

3.6, 3.7 and 3.8 with a comparison among the four models presented in

Table 3.9.

Examination of Table 3.9 reveals that GENEOA/OB was the best fit

,model in five out of the nine areas while GENEl/2 was the best fit

model for the other four. If each model is scored, for each of the

criterion, on a scale of 4 to I with 4 representing the best fit and I

representing the worst fit, the following total scores are obtained

for the four models.

GENEOA/OB 28

GENE1/2 24

GENEIC/2C 25

GENE3A/3B 17

From these comparisons, it appears that GENEOA/OB and GENiE1/2

yield the best fit to the extrinsic parameters. GENEI/2 is the only

model to do reasonably well for the input/output relationships

involving cAiiP factors (w/o catabolite repression, 0.1 cAMIP input and

|a -- ~
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O/2x cAMP input). The difference in the residuals for a 0.4' arabinose

input is well within experimental error for all models.

Overall, GENEOA/OB (Figure 3.1) was judged the model of best fit

based upon the preceeding analysis. Although GENEI/2 was superior for

some of the criteria, and scored a close second overall, this model

was not further evaluated. An additional consideration influenced

this decision. The new state dependencies, as manifested in the new A

matrix of the system following eigenvalue optimization, are difficult

to explain physiologically. Furthermore, this model would be difficult

to use in the cost analysis as it would be difficult to simulate

genetic mutational conditions with this model.

A
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Table 3.1

GENEOA/OB

rominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .02669 1.59421 .66104

X2 .50077 .07694 .31576

X3 .50096 0 .15610

X4 0 1.63394 .61827

X5 .02712 1.63869 .66104

X6 .34659 0 .02948

X7 .26215 .04654 .43021

X8 .07663 .25099 .15488

Y 1.00017 59.73076 24.76729

Transient Analysis:

Characteristic Uninduced System Induced (1%)

1% Settling Time 49 sec. 10 sec.

5' Settling Time 35 sec. 7 sec.

10% Settling Time 31 sec. 5 sec.

Peak Overshoot 203% 30.5%

Frequency .17 Hz .33 Hz

Time Constant 15 sec. 2 sec.

I-h--
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Table 3.2

GENiE1/2

Hominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .94476 60.01078 24.57117

X2 -19.33885 -22.36168 -20.84799

X3 2.02655 -45.37633 -16.93461

X4 -47.28985 35.94694 -13.99513

X5 -68.12986 12.52118 -35.86944

X6 26.27311 33.74719 29.86274

X7 23.57445 20.22070 22.23295

X8 -25.58386 1.96575 -14.56401

Y .94476 60.01078 24.57117

Transient Analysis:

Characteristic Uninduced System Induced (1%)

1% Settling Time 753 sec. 416 sec.

514 Settling Time 581 sec. 244 sec.

10% Settling Time 521 sec. 183 sec.

Peak Overshoot 1951% 29.7%

Frequency .017 Hz .017 Hz

Time Constant 61 sec. 142 sec.
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Table 3.3

GENEIC/2C

Nominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .99946 60.00013 24.59973

X2 7.83685 -12.53191 -.31066

X3 4.40249 -17.42540 -4.32867

X4 -3.20147 15.02951 4.09092

X5 .43220 25.94601 10.63772

X6 7.19650 -.17859 4.24646

X7 .56984 -1.21463 -.14395

X8 1.68268 -4.95729 -.97331

Y .99946 60.00013 24.59973

Transient Analysis:

Characteristic Uninduced System Induced (1%)

1% Settling Time 109 sec. 66 sec.

5Z Settling Time 87 sec. 45 sec.

10% Settling Time 77 sec. 34 sec.

Peak Overshoot 505% 67.8%

Frequency .048 Hz .048 Hz

Time Constant 17 sec. 17 sec.
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Table 3.4

GENE3A/3B

Nominal Values:

Uninduced System Induced (1%) Induced (.4%)

XI 5.67836 * 60.02403 27.53868

X2 5.05832 0 0

X3 8.66590 0 0

X4 0 24.78320 9.34848

X5 1.38540 8.10982 3.89071

X6 4.58111 0 0

X7 9.45382 0 0

X8 1.17530 6.50888 2.45720

Y 5.67337 60.02403 27.53868

Transient Analysis:

Characteristic Uninduced System Induced (1%)

10% Settling Time 21 sec.

5% Settling Time 0 12 sec.

10% Settling Time 011 sec.

Peak Overshoot 294% 12%

Frequency .17 Hz .05 Hz

Time Constant 3 11 sec.

Average value taken over last period

Q Oscillations insufficiently dampped
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Table 3.5

GENEQA/OB Residual Analysis

Criterion Expected Computed Residue %Error

w/o Cat.Rep. 119.46152 63.60912 55.8524 46.75

0.4% ara 24.5 24.76729 .26729 1.09

0.1 cAMP 23.8923 58.86434 34.972 146.7

Xl:X2 (1) 33.3:1 20.7:1 12.6 37.84

0/2x cAMP 133.9913 60.69341 73.2979 54.70

X2=0 (u) 1.0 2.15432 1.15432 115.4

10% S.T. MI 300 sec. 5 sec 295 sec.

~X4/X5 Diff. 0 .0047 .00475

#-/0 values 0 3 3

Mie le
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Table 3.6

GErJE1/2 Residual Analysis

Criterion Expected Computed Residual %Error

w/o Cat.Rep. 120.02156 81.16317 38.85839 32.38

0.4% ara 24.5 24. 57117 .07117 .29

0.1 cA-1P 23.00431 42.97822 18.97391 82.48
off

XJ:X2 (1) 33.3:1 60:1 * 26.7 * 80.18

0/2x cAIIP 93.6754 78.93585 '14.73957 15.73

X2=0 (u) 1.0@@@

10% S.T. (1) 300 sec. 183 sec. 156 sec.

~X4IX5 Diff. 0 23.42576 23.42576

#-/0 values 0 6 6

*X2 negative, taken as 1.

@Data not available/ Numbers outside range of program

N4 
%
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Table 3.7

GENEIC/2C Residual Analysis

Criterion Expected Computed Residue /Error

w/o Cat.Rep. 120.00026 61.19817 58.80209 49.0

0.4% ara 24.5 24.59973 .09973 .41

0.1 cAMP 24.00005 58.96817 34.96812 145.7

X1:X2 (I) 33.3:1 60:1 * 26.7 * 80.2

0/2x cAIMP 134.18600 61.14675 73.03925 54.3

X2=0 (u) 1.0 4.24521 3.24521 324.5

10% S.T. (I) 300 sec. 34 sec. 266 sec.

* X4/X5 Diff. 0 10.9165 10.9165

#-/0 values 0 6 6

X2 negative, taken as 1.

iZ.

I.-.. -. .
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Table 3.3

GENE3A/3B Residual Analysis

Criterion Expected Computed Residue %Error

w/o Cat.Rep. 120.04806 199.7 @ 79.65194 66.35

0.4% ara 24.5 27.53868 3.03868 12.40

0.1 cAiIP 24.00961 54.72382 30.71421 127.92

XI:X2 (I) 33.3:1 60:1 * 26.7 * 80.18

0/2x cAMP 78.43054 34.96531 43.46523 55.42

X2=0 (u) 1.0 9.43011 3.43011 843.01

10% S.T. (I) 300 sec. 12 sec. 288 sec.

X4/X5 Diff. 0 16.67338 16.67338

r-/0 values 0 5 5

X2 zero, taken as 1.

2 Averaged over last period

"4

'
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Table 3.9

'i odel Discrimination

F esidual Analysis

Criterion: GeneOA/OB Genel/2 GenelC/2C Gene3A/3B

w/o cat. rep. 55.8524 38.85839 58.80209 79.65194

0.4% arabinose .26729 .07117 .09973 3.03868

0.1 cAIP input 34.972 18.97391 34.96812 30.71421

Xl:X2 I ratio 12.6 26.7* 26.7* 26.7*

0/2x cAMP input 73.2979 14.73957 73.03925 43.46523

X2=0 (u) 1.15432 3.24521 8.43011

10% settling (1) 295 56 266 288

X4/X5 differ .00475 23.42576 10.9165 16.671421

;i of -/0 values 3 6 6 5

X2 value zero or negative

Data not available

r



Chapter 4

System Analysis

4.1 Introduction

The models developed in this study form linear time invariant

representations of the L-arabinose system. Several techniques are

available to study various aspects of the modeled system. These

techniques include eigenvalue analysis, controllability analysis,

frequency analysis and state space analysis. An eigenvalue analysis

can be used to study the stability and transient behavior of the

system. Formation of the controllability matrix can be used to test

Ithe controllability of the system. The frequency response of the

system can be examined by deriving the transfer matrix of the system.

Lastly, various state dependencies can be examined by appropriate

state space plots.

Also discussed in this chapter is a further examination of

GENEOA/OB and an attempt that was made to improve its performance.

A ,4.2 Eigenvalue Analysis

Eigenvalues were computed, using equation 2.20, for the four

models developed and for the original system (Figure 2.2). These

* , eigenvalues are listed in Table 4.1. All models have two real

eigenvalues and three pairs of complex eigenvalues. The real parts of

74
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the eigenvalues of GENEOA/OB ranged from -1.373 to -.11, while those

of GENEl/2 and GENEIC/2C ranged from -1.0 to -.01 and from -1.649 to

-.072 respectively. In all models, except GENE3A/3B, all of the

eigenvalues are located in the left half of the complex plane. For an

LTI system, this fact is enough to establish the asmyptotic stability

of the system [3].

Examination of the eigenvalues also shows the reason for the

faster settling time and reduced oscillatory behavior of GENEOA/OB

compared to the other models. All other models have eigenvalues closer

to the imaginary axis than those of GENEOA/OB. The closer the

eigenvalues are to the imaginary axis the longer lasting and more

oscillatory the transient behavior becomes.

2As noted in section 3.2. the oscillatory behavior of GENE3A/3B

was not detected during model development. Further analysis of

GENE3A/3B revealed that the uninduced system retained its oscillations

when run for 1200 seconds with the output (y) ranging between zero and

approximately eighteen. The apparent stability of the induced system,

GENE3B, turned out to be due to the state limiter which restricted the

states of the model to non negative values. This limiter was a program

loop that reset any negative state values to zero at each iteration of

the differential equation solver. Thus, this limiter introduced a

nonlinearity into the system. When this introduced nonlinearity was

removed, the instability of the system, predicted by the positive

eigenvalues, became evident.
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4.3 Controllability

A computer program was used to test the original system (Figure

2.2) for controllability. The program tested for controllability by

forming the controllability matrix of the system. For an LTI system,

the controllability matrix is defined as follows.

[BIAB'A 2 B '_ Anl] (4.1)

If the rank of the controllability matrix is n (the dimension of

the system), the system is completely controllable. Stating that a

system is controllable means that the states of the system can be

moved from any arbitrary initial condition to any desired final values

by use of the inputs to the system only [3].

For the original system, the rank of the controllability matrix

-(Figure 4.1) is n with the first eight columns of the matrix being

linearly independant. Thus, the system as defined is indeed

controllable, and it can be stated that the choice of inputs for the

model are adequate to control the input/output behavior of the model.

This is physiologically realistic since the three inputs chosen

represent the major external substances involved with the control of

the activity of the gene. Knowledge of the controllability also

indicates that the selection of where to apply the inputs is

sufficient for system control (ie. the non zero entries in the B

matrix), although it does not rule out the possibility of the inputs

having a direct effect on other state variables.
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4.4 Frequency Analysis

One approach that can be used to analyze the behavior of an LTI

system is to examine the frequency response of the system. This

involves formulating the transfer function of the system and examining

the response of the output-to a sinusoidal input. This can be most

easily done using the Laplace Transform of the system as follows.

For this LTI system with zero initial conditions [3].

X = AX(t) + BU(t) (4.2)

y = CX(t) (4.3)

the Laplace transformation yields:

sX(s) = AX(s) + BU(s) (4.4)

Y(s) = CX(s) (4.5)

Solving for the input/output relationship yields:

(sI-A)X(s) = BU(s)

X(s) = (sI-A)-IBU(s)

Y(s) = C(sI-A)- BU(s)

H(s) = Y(s)/U(s) = C(sI-A)-IB (4.6)

H(s) - N(s)/D(s) (4.7)

H(s) is called the system transfer matrix. For a single input

single output (SISO) system, H(s) reduces to the system transfer

function ,n(s)/d(s), where d(s) represents the characteristic equation

of the system. The roots of d(s)=O represent the eigenvalues (poles)

of the system, and the roots of n(s)=O represent the zeros of the

system.

Ilk
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For GENEOA/OB, where there are three inputs, H(s) can be written

as follows.

H(s) = (l/det(sI-A)) P(s) (4.8)

In this equation, P(s) is a 1x3 matrix whose elements are polynomials

in s, and the det(sI-A) represents the common denominator of the

elements of H(s). For GENEOA/OB, the det(sI-A) is an eighth order

polynomial that represents the characteristic equation for the system,

and the roots of det(sI-A)=O represent the eigenvalues of the system.

Each column of P(s) is a polynomial in s of order less than eight that

represents the numerator of the transfer function relating one of the

inputs to the system output. H(s) for GENEOA/OB is shown in Figure

4.2.

2 The steady state frequency response of the system can now be

obtained by letting s=jw in H(s). Thus forming the frequency response

matrix of the system H(jw). Since our system is asymptotically stable,

the response of the system to a constant input (Up) is given by:

y(t) = H(O)Up

For GENJEOB, if we let jw=O in H(jw) and let our inputs equal 1.0 (our

original assumption), we find that y(t)=57.798 which differs from the

computer generated steady state response of the system only due to

round off error.

lultivariate frequency domain analysis techniques that correspond

to those for SISO systems (Nyquist and Bode Plots) can be used for

studying the frequency response of this three input model. However,

those techniques, such as the MIultivariable Nyquist Criteria, are
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relatively new and were not used in this study [34].

4.5 State Space Analysis

The analysis of GENEOA/OB continued with an examination of

selected state dependencies. The activity of PBAD, the promoter for

the B, A and D genes, in relation to the activity of Pc, the promoter

for the C gene, was investigated for both the uninduced and induced

system (Figures 4.3 and 4.4). From the plots of X vs X2, it

can be seen that in the uninduced system, the two states track each

other with an apparent phase lag to their steady state values, while

in the induced system, their relationship is not well defined.

Figures 4.5 and 4.6 show the time dependencies in the uninduced

,;system of the free and bound araC protein respectively. The free araC

protein represents the sum of the concentrations of the repressor and

activator (X7 + X.). The bound protein is the sum of the

associations of the protein to araO and aral (X3 + X4 +

X5). Figures 4.7 and 4.8 show the same data for the induced

system. It can be seen by comparing these plots to those plots for the

corresponding output of the system (Figures 4.9 and 4.10), that the

"protein states" follow the same trajectory as the overall response of

the system.

When the repressor (P1) is plotted against the activator (P2) for

the uninduced and induced system, Figures 4.11 and 4.12 respectively,

the results are very similar to those plots of PBAD vs Pc activity.

That is, in the uninduced system, the repressor and activator

01 P11-
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concentrations track each other with an apparent phase lag toward

their steady state values. While in the induced system, their balanced

reaction is disturbed. Again, similar results are obtained when the

output is plotted against the free protein (Figures 4.13 and 4.14).

Plotting the output vs aral activity (Figures 4.15 and 4.16)

reveals the tracking in the uninduced system once more, but also shows

a higher degree of tracking in the induced system than seen in other

state dependency plots.

4.6 GENEOA/OB Analysis

The model, GENEOA/OB, was selected in Chapter 3 as the model

for the cost analysis portion of this research. Therefore, further

°analytical investigation was restricted to this model. The model

(Figure 3.1) was transformed into the Jordan Normal form, as shown in

Figure 4.17, and an eigenvalue analysis was performed as in section

2.2. Through the eigenvalue sensitivity analysis (Table 4.2), it was

revealed that the uninduced system response was most sensitive to

changes in the system's real eigenvalues as fifty percent changes in

the eigenvalues caused the largest percent changes in the output (y)

especially for the uninduced system. It also revealed that the induced

system response was relatively insensitive to changes in the
eigenvalues. Using the real eigenvalues, the system was optimized as

siiown in Table 4.3. In this table, as in Chapter 2, e represents the

system error. This model was then returned to the original state space

representation by the inverse transform. The resulting new A matrix
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for the model is shown in Figure 4.13. Here again, as in GEiE1/2, the

state dependencies have changed dramatically due to the eigenvalue

optimization.

This new model, GENE7A/73, was evaluated, as in Chapter 3.

against the same criteria as the original four models with the results

presented in Table 4.4. GENE7A/7B was a better fit model than

GENEOA/OB for 6 of the 9 criteria. Although, comparisons between

GENEOA/OB and GENE7A/7B in table 4.4 show mostly minor differences,

there are significant differences for the X1:X 2 ratio and the

response when X2 equals zero. The fact that most differences were

minor and the physiological anomaly of GENE7A/7B (ie. the lack of

X3 dependency upon X7 ) suggested that GENEOA/OB was still the

9better choice for the system model. The smaller residual in the

X4 1X5 difference and the faster settling time of GENEOA/OB

also indicate that GENEOA/OB is still the best choice for the system

model.

One area, in which all models showed significant deviation from

the reported data, was the response of the system to the absence of

catabolite repression. When the models were modified to remove the

dependency of cAMP binding upon the catabolism of L-arabinose (X6

no longer dependant upon XI), the increase in X1 activity and

hence, enzyme production was significantly below that predicted in the

literature [31]. In the biological system, the removal of catabolite

repression involved the removal of the catabolites (the products of

the action of the 3AD enzymes) that were reducing the intracellular
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concentrations of cAMP. In the model, catabolite repression was

simulated by the inverse dependency of X, upon X , so that0

removal of catabolite repression involved deleting the dependency of

X6 upon X, by letting coefficient a17 in equation 2.8

equal zero.

An attempt was made with GENEOA/OB to improve this response by

increasing the dependancy of X6 upon X1 and simultaneously

increasing the cAMP input. The results, as shown in Table 4.5,

indicate little improvement of the model using this approach.

Although, further adjustments using this technique might be of use in

the model, it is felt that a totally different approach might be

necessary. This could possibly involve the addition of another state

-which reflects cAHP concentration alone. One could then relate the

cAiIP(CAP)/DNA associations to this new state variable.

OE..&M.O k
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A(s)=311.73s5 + 948.9s 4+ 1324.9s 3 + 1329.3s 2+ 349.09s + 207.0

B(s)= -23.463s3 _ 35.252s 2 _-10.63s + 1.154

G(s)=5.3952s 5+ 10.823s 4 + 17.06s 3 + 13.634s 2+ 11.316s + 9.1665

D(s)=s 8 + 5.006s7 + 14.78s6 + 30.793s 5 + 43.736s4

+ 44.815s3 + 33. 982s 2 + 16.462s + 3.760

H[) A(s) B(s) C(s)]

D( s)

Transfer i'atrix, H(s). for GENEQA/OB

Figure 4.2

lip
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-0.411 1.50 0.000 0.Coo 0.000 0.000 0.000 0.000
-1.850 -0.411 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 -0.110 1.049 0.000 0.000 0.000 0.000
0.000 0.000 -1.049 -0.1.10 0.000 0.000 0.000 0.00
0.000 0.000 0.000 0.000 -0.649 0.329 0.000 0.000
0.000 0.000 0.000 0.000 -0.329 -0.649 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 -1.373 0.CcO
0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.294

Real Jordan Normal Form of GENEOA/OB

Figure 4.17

..
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"-0.933 -0.143 -3.070 -0.C52 0.992 0.048 O.0'T 0.1!8
0.024 -1.113 -C.!4t -0.565 0.017 0.115 0.014 OeOcSS
0.017 -0.067 -0.329 -0,137 0.00l 0,011 0.920 0oO.3
0.017 -0.044 -0.S21 -;0..120 0.000 C.012 0.01 2.S34

-0o024 0.047 -0.977 0.C16 -0.997 0o.83 -0.016 5o1!6
-0.404 -0.220 -0.105 -O.C9 -C.OO -0.933 0.01 0.1!14
-0.0w 1.C3! -0.385 0.022 -0.007 -0.003 -0.011 -0.011
-0.302 0.GOI C.OC1 -V.501 -C.491 -0.002 0.003 -0.009

New A Matrix for GENE7A/7B

Figure 4.18
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Table 4.1

Elgenvalues

Original GENEQA/OB GENE1/2 GEN'E1C/2C GENE3A/3B

-1.809 -.411+1-.35j -.045 -.072+.295j -1.573

-.067+1.067j -1.373 -.01+. 108j -1.004 -.436+.603j

-.701+.60lj -.11+1.049j -1.0 -.557+.136j -.582

-.331+.86lj -1.294 -.044+.019j -1.649 .229+1.153j

-1.0 -.649+I.329j -.701+.45j -.302+.409j .072+.232j
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Table 4.2

GEN'E7A/7B Analysis

NJominal Values:

Y= 2. 70252 Y I = 57.79885

Elgenvalue Sensitivity:

Eigenvalue %Change Y~ U Y I Z

EGI(R)-.370 -50 2.74069 1.4 58.81736 1.8

-.452 +50 2.66430 1.4 56.79319 1.7

EGl( 1) 1.665 -50 2.74578 1.6 57. 28474 .9

2.035 +50 2.66005 1.6 58.04540 .4

EG2 -1.236 -50 1.36707 49.4 60.98005 5.5

-1.512 +50 3.07216 13.7 55.19507 4.5

EG3(R)-.099 -50 2.69041 .4 57.72508 .1

-121 +50 2.71551 .5 57.87167 .1

EG3(I) .944 -50 2.23844 17.2 57.80063 0

1.154 +50 3.08528 14.2 57.81067 0

EG4 -1.165 -50 3.53919 31.0 57.82901 .1

-1.423 +50 1.29406 52.1 57.77416 0

EG5(R)-.584 -50 3.40098 25.8 56.66299 2.0

-714 +50 2.14669 20.6 58.30939 .9

EG5(I) .296 -50 2.03328 24.8 60.96344 5.5

.362 +50 2.54532 5.8 54.78762 5.2
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Table 4.3

GENE7A/73

Elgenvalue Optimization:

EG2 yIe Iyu

-1.274 60.02922 .00085

-1.275 60.00497 .00002 2.05231 1.10736

-1.276 59.98076 .00037

EG4

-1.428 1.00617 .00004

-1.429 59.97913 .00044 .99911 .00000

-1.430 .99205 .00006

.. ~ X.%~X''.~,y. L LW1I
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Table 4.4

GEiEOA/OB & GENE7A/7B

Residual Analysis

Criteria GENEOA/OB GENE7A/7B

w/o cat. rep. 55.8524 (46.75%) 54.61397 (45.43%)

0.4% arabinose .26729 ( 1.09%) .15681 ( .64%)

O.lcAMP input 34.972 (146.4%) 33.54954 (139.5%)

X1:X 2 ratio 12.6 (37.84%) 33.63 (101.0%)

0/2x cAMP 73.2979 (54.70%) 67.7666 (51.86%)

X2=0 1.15432 (115.4%) .15334 (15.33%)

10Z settling (U) 215 295

X difference .00475 .14555

#-/0 values I/U 3 3

Residue =lExpected value - Computed valuel

Percentages = (residue/expected value) x 100
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Table 4.5

* GENEOA/03
Catabolite Repression Analysis

Criteria a 7  a .517 --. 50

Normal cAM'P Y -59.99834 e,-.0000 Y1-59.73076 e1=.07249

0.1 cAMP input Expected-23. 99934 Expected-23.8923
Computed=57. 96500 Computed-5B. 86434
Residual -33.9657 Residual -34.972

(141.5%) (146.4%)

w/o cat. rep. Expected-119.9967 Expected-119.4615
Computed-67. 31602 Computed-63. 60912
Residual =52.6807 Residual -55.8524

(43.9%) (46.8%)

0/2x cAMP Expected-i 32.1602 Expected-i 33.9913
Computed=64. 18052 Computed-60. 69341
Residual -67.9797 Residual =73.2979

(51.44%.) (54.7%)



AChapter 5

Repressor Model Development

In order to compare the cost of control, it was necessary to

develop a hypothetical repressor only model for the L-arabinose

system. This model would have to reproduce the input/output behavior

of the system while using only repressor control. A five state model

was selected with the following state assignments.

x = PBAD/RNAP associations

x = PR/RNAP associations

x = R/araO associations

x4 = cAfP(CRP)/DNA associations

x = Concentration of Repressor (R)

The first four states were selected because they represent the

controlling sites necessary for a repressor controlled gene with

cAMP/CRP activation.

SR represents the promoter for the controlling gene, araR,

(analogous to araC) which codes for the repressor (R). States x3,

4 and x5 in this model are analogous to states x3, x6

and x7 respectively in the activator/repressor model. Because

there is no activator in this model, states x4, x5 and x8

of the activator/repressor model are not represented in this model.

106
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It is proposed that the operation of the system can be described

by the following set of equations.

A, =-alxl -a2x3 +a3x4 +blu 2  (5.1)

2 -a4x2 -a 5x3 +a6x4 +b2u2 (5.2)

3= -a7x3 +a x5 (5.3)

x4 =-a 9 xl -aox4 +b3u3  (5.4)

x= alx 2 -a12x5 -b4uI  (5.5)

In these equations, states are fed back upon themselves with

coefficients al, a4, a7, alO and a12. The effect

of the repressor upon PBAD and PR (the gene which produces the

repressor) is expressed with coefficients a2 and a5.

Catabolite repression is simulated using coefficient a9.

Ioefficient a11 provides repressor binding at araO. RNAP is input

to both state x1 and x2 in this model; with no activator, PBAD

would presumably be active simply in the absence of the repressor

requiring only cAMP activation and a source of RNAP. The effect of

L-arabinose in this model would be to deactivate the repressor

substance. This is a classic approach incorporated in the original

Jacob-lonod inducible operon, in which activity of the genetic system

is stimulated when a substrate substance interacts and inactivates a

repressor molecule. Using initial values as assumed in the eight state

. space model, this repressor model can be represented in state space

form as follows.
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-1.0 0 -1.0 1.0 0" -0 1.0 0-

0 -1.0 -1.0 1.0 0 0 1.0 0

X 0 0 -1.0 0 1.0 X+ 0 0 0 U

-.5 0 0-1.0 0 0 0 1.0

0 1.0 0 0 -1.0 -1. 0 0

y= [37.4672 0 0 0 0 ]X

Here again, as in GErEOA/OB, the output was scaled by c1 in

the output matrix. Upon implementation of this model, GENE4A/4B, on

the computer, the following values were obtained.

uninduced Induced

x 8.3 1.2

x2  .8 1.2

x . .2

x4  .6 .4

x5  .8 .2

Y 29.97375 44.96063

A sensitivity analysis and optimization were done first on the 5

matrix parameters (Table 5.1), which yielded the following system

response.

Y = 1.04908 e = .00241

Y 59.94751 e, = .00276

Next, a sensitivity analysis was performed on the A matrix

parameters. The analysis (Table 5.2) revealed that the uninduced

system was very sensitive to small changes in the coefficients, while

the induced system was relatively insensitive to these changes.
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Because of these results and the already low values of system

error, none of the A matrix parameters were changed. Characteristics of

GENE4A/4B are presented in Table 5.3, and output plots are found in

Figures 5.1 and 5.2.

GENE4A/4B was then tested, where applicable, against those

extrinsic criteria used earlier with the results shown in Table 5.4.

As presented, the results for GENE4A/4B compare favorably with those

for GENEOA/OB except for the case when x2 is set to zero.

It will be noted later that this model produced high costs

compared to the activator/repressor model for the L-arabinose system

(see chapter 6). To ensure that these high costs were not an artifact

of simulation, a second repressor only model was developed

*(GENEA/8B).

GENEGA/8B was developed from the same original state space model

as GENE4A/43, but with the final input values of GENEOA/OB as the

initial B matrix. This resulting model produced the following

response.

uninduced Induced

xI  .424 .73337

x2  .424 .73337

x3  ,424 0

x4  .148 0

x5  .424 0

Y 15.38609 27.47740

p.,



From this point, the model was optimized, first with the B matrix

parameters and then with the A matrix parameters to yield the model in

Figure 5.3 and with the following response (see also Figures 5.4 and

5.5).

Y = 1.11345 eu = .01403

YI = 60.17121 e I  .02931

A residue analysis done on GENE8A/8B produced the results in

Table 5.6. Again, this repressor only model compared favorably with

GENEOA/OB for all criteria except the case when x2 equaled zero in

the uninduced system. The fact that both repressor only models

produced output levels similar to those for the induced system when Pc

activity was set to zero is exactly the result expected

physiologically. For a repressor only controlled gene, absence or

inactivation of the repressor is sufficient to begin enzyme production

provided that other necessary inputs are present. This occurs in the

two repressor only models when the activity of state x2 is set to

zero.
-

1.

V. -
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-1 0 -1.93, 1 0 0 .7 0

0 -1 -1 1 0 0 .7 0

X= 0 0 -1 0 1 X+ 0 0 U

-. 5 0 0 -1 0 0 0 2.3

0 1 0 0 -1 -1.6 0 0

Y =[37.4672 0 0 0 0] X

-: GENE8A/83

Figure 5.3
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Table 5.1

GENE4A/43

3 Iatrix Parameters

Nominal Values: YU=29.97375 YI=44.96063

Coefficient %Change Y U Yu YI %YI

bI .5 -50 14.98683 50 29.97375 33.3

1.5 +50 44.96063 50 59.94751 33.3

b2 '5 -50 37.46719 25 50.49996 12.3

1.5 +50 22.48032 25 37.46719 16.7

b3 '5 -50 22.48032 25 37.46719 16.7

1.5 +50 37.46719 25 52.45407 16.7

b4-.5 -50 37.46719 16.7

-1.5 +50 50.49996 12.3

Coefficeint YU eU YI el

bI 1.5 59.94751 .00275

1.51 60.24723 .06112

b2 3.92 1.19898 .03959

3.93 1.04912 .00241

3.94 .89926 .01014

b 3.92 59.79761 .04096

3.93 59.94747 .00276

3.94 60.09732 .00947
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Table 5.2

GENJE4A/43
A 'iatrix Sensitivity Analysis

Nominal Values: YU=1.04908 YI=59.94751

Coefficient ZChange Y U U Y I I

a2 -.9 -10 8.27217 68 60.24137 .5

-1.1 +10 0 100 59.64168 .5

a3  .9 -10 0 100 59.32306 1

1.1 +10 3.89062 271 60.52389 1

a5 -.9 -10 0 100 59.78807 .3

-1.1 +10 4.52410 331 60.08889 .2

.a6  ,9 -10 2.49781 138 60.24137 .5

1.1 +10 0 100 59.64168 .5

a8 ,9 -10 4.88634 366 60.10362 .3

1.1 +10 0 100 59.80342 .2

a11 ,9 -10 4.88634 366 63.24299 5.5

1.1 +10 0 100 54.14050 9.7
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Table 5.3

GENE4A/4B

Nominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .02800 1.60000 .65680

X2 2.45800 4.03000 3.08680

X3 2.45800 .10000 1.51480

X4 .98600 .20000 .67160

X5 2.45800 .10000 1.51480

Y 1.04908 59.94751 24.60844

,Transient Analysis:

Characteristic Uninduced System Induced (1%)

10% Settling Time 16 sec. 6 sec.

5% Settling Time 13 sec. 4 sec.

10% Settling Time 11 sec. 2 sec.

Peak Overshoot 3718% 7.2%

Frequency .17 Hz .14 Hz

Time Constant 1.7 sec. 1.7 sec.

Nrw
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Table 5.4

GENJE4A/4B Residual Analysis

Criterion Expected Computed Residual %Error

w/o Cat.Rep. 119.89502 74.93439 44.96063 37.50

0.4% ara 24.5 24.60844 .10844 .44

0.1 cAf4P 23.97900 48.34948 24.37050 101.63

X1:X2 (1) 33.3:1 .4:1 32.9 98.80

0/2x cAMP 107.48283 74.93439 32.54844 30.28

X2=0 1.0 1.6666 .66667 66.67

10% S.T. (1) 300 sec. 2 sec. 298 sec.

-/0 values 0 0 0

NOSM,1 OS
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Table 5.5

GEPiE8A/8B

iominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .02985 1.60597 .66030

X2 1.49254 1.89851 1.65493

X3 1.49254 .29851 1.01493

X4 2.28507 1.49701 1.96985

X5 1.49254 .29851 1.01493

Y 1.11845 60.17121 24.73955

Transient Analysis:

Characteristic Uninduced System Induced (1%)

1% Settling Time 22 sec. 10 sec.

5% Settling Time 18 sec. 6 sec.

10% Settling Time 16 sec. 5 sec.

Peak Overshoot 4341% 21.3%

Frequency .- -

Time Constant 2 sec, 1.9 sec.



121

Table 5.6

GENE8A/83 Residual Analysis

Criterion Expected Computed Residual /.Error

w/o Cat.Rep. 120.34242 60.47208 59.87034 49.75

0.4Z ara 24.5 24.73955 .23955 .98

0.1 cAMP 24.06848 31.73360 7.66512 31.85

XI:X2 (1) 33.3:1 .83:1 32.45 97.45

0/2x cAMP 66.64563 61.02869 5.61694 8.43

X2-0 1.0 74.93439 73.93439 7393.

10 S.T. (1) 300 sec. 16 sec. 284 sec.

#-/0 values 0 0 0



Chapter 6

Cost Analysis

6.1 Introduction

With state space models developed for both the

activator-repressor and repressor only case, the hypothetical energy

cost to the cell could be examined. Various energy expenditures are

necessary for maintaining the DNA bindings and the concentrations of

the controlling substances. The various states of the models should be

related directly to the energy expended. Thus, it is proposed that a

representation of the energy required for the operation of a gene can

jbe calculated from the following equation.

J = XTQX + UTRU (6.1)

where: J= Hypothetical cellular energy cost

Q- nxn matrix that assigns weights to the

states of the system.

R= pxp matrix that assigns weights to the

inputs of the system

If we assign equal weights to the states of the system and assume

no cost for interactions among the states, then Q reduces to the

identity matrix of order n. Also, if we assume no cost to the cell for

the inputs, then R becomes a zero matrix, and the equation reduces to

122
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J = Zx. 2  (6.2)

Using this equation, the cost of regulation to the cell was calculated

for GENEOAIOB, GENE4A/4B and GENE8A/83. Table 6.1 presents the results

of this cost analysis for the various system operations.

6.2 Cost analysis for the L-arabinose system

The results seem to indicate that, in these system situations,

the repressor only models must expend more energy for similar system

operation than the activator-repressor model.Initially, the analysis

was done upon GENEOA/OB and GENE4A/4B only. The high costs associated

with GENE4A/4B tended to be due to the high activity of x2, It was

then decided to redesign the repressor only model in an attempt to

'reduce the x2 activity and hence lower the energy cost to the

cell. :'hen the activity of x2 was reduced, other state values were

necessarily raised in order to provide the same input/output system

response. This implies that the higher cost of the repressor only

models is not an artifact of model development.

For this particular gene-enzyme complex, the more complicated

control mechanism may be the most energy efficient for the cell. An

increase in the number of controlling sites along the DNA may reduce

the overall DNA activity necessary for gene operation compared to a

structure in which the control activity is restricted to a smaller

number of controlling sites on the DNA.

43 .
; ; T ' . .4 ' 2 . ". , ', : ,"" : " ":'
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.* The "Demand Theory of Gene Regulation" suggests that in an

* arabinose rich environment, activator control would be selected for

while in an arabinose poor environment, repressor control would be

selected for. It further suggests that the dual control of the system

has been selected for because E. coli normally inhabits both

environments about equally during its life time. Thus, this

gene-enzyme complex could be expected to be utilized over about

one-half of the organism's life span and then not used for the other

half. Since the system may be off about 50% of the time, it would be

desirable to have the repression of the system be inexpensive. This

T. appears to be the case for the dual control model of the L-arabinose

system, and not the case for the repressor only model. The dual of

, this concept should also be true. That is, the operational cost in the

induced system should be less than in an activator only controlled

system. Analysis of this problem must await development of an

activator only model for the L-arabinose system.

Under conditions that reduce the effective concentration of the

controlling protein, the dual control model also appears to cost less

than the repressor only model. iutations that reduce the effectiveness

-' of the protein are far more common than mutations that increase the

effectiveness of it. If the organism were found only in an arabinose

* rich environment, these mutations in a repressor only system would not

p be selected against because enzyme production would continue unabated

and the arabinose utilized. The organism, however, is not always in an

arabinose rich environment and thus continued enzyme production is



125

wasteful and would be selected against. Thus, the cheaper cost of the

dual control model under these circumstances would appear to be

advantageous for the organism.

Thus, it appears that the above cost analysis supports the theory

that this particular dual control system has been selected for based

upon the demands of the environment for the unique operation of this

gene-enzyme complex.

Following development of the models, it was suggested that the

power of comparisons such as those done here is greatest if the

systems being compared differ by only one parameter [35]. An attempt

to remodel the repressor only system using such an approach yielded

the model, GENE9A/9B, shown in Figure 6.1.

The A matrix of this model was restructured in an attempt to make

this model as close to GENJEOA/OB as possible. As shown in Figure 6.1,

corresponding coefficients of the two models are identical with the

exception of the coefficient representing repression by araO which is

-1.98 in GENE9A/9B and -1.0 in GENEOA/OB. Note that the state feedback

of x5 upon itself which was used to control the concentration of

the repressor in GENE4A/4B and GENEEA/8B has been replaced with two

terms, one representing the loss of repressor when bound to x3 and

one representing protein degradation which is analogous to the

conversion of P1 to P2 in GEN1EOA/CB.

The system responses of GENIE9A/9B are presented in Tables 0.2 and

6.3 and in Figures 6.2 and 6.3. The responses of this model are

* consistent with the models developed earlier. In addition, this model

4% % % %

J._,pJ N 9 11
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shows improved responses when cAi;P input is varied.

A detailed cost analysis comparing GENEOA/OB and GENE9A/9B is

presented in Table 6.4. The data in Table 6.4 reveals that following

mutations that would yield no repressor or an inoperable repressor

(X2=O or X5=O), the complex form of control saves the cell from

unnecessary energy expenditure. The costs for the induced system are

similar although distributed differently between the two models. The

major difference between the two models is in the uninduced cost. As

revealed in Table 6.4, the repressor only model has a substantially

higher cost than the activator/repressor model with the higher cost

distributed fairly equally over all states except x1 , This higher

cost in the uninduced system was found in all repressor only models.

As mentioned earlier, this indicates that for the L-arabinose system,

complex control may be more cost efficient than simple control.

A plot (Figure 6.4) was made of the energy cost to the organism,

as computed from GENEOA/OB and GENE9A/9B, versus the percentage of

time that the L-arabinose system in induced. Thus, the cost of dual

control was compared to the cost of repressor only control over the

full range of induction possibilities.

As shown in Figure 6.4, the data indicates that the L-arabinose

system would have to be induced greater than 85 percent of the life

span of the organism in order for repressor only control to be less

energy expensive to the organism. Thus, for E. coli, an organism that

can expect to use this operon fifty percent of the time [1], the

complex dual control appears to be more cost effective than a simple

;tw
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- 0 -1.93 1 0- 0 .7 0

0 -1 -1 1 0 0 .7 0

0 0 -1 0 1 + 0 0 0 U

-. 5 0 0 -1 0 0 0 1.86

0 1 -1 0 -. 001 -I.6 0 0

y=[3 7 . 4 67 2 0 00 0] X

GENE9A/9B

.Figure 6.1
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. -GENEOA/OB 9!GEI9A9
a 0

0

go 01

0 0)
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Z. INDUCTION

Energy Cost vs Percent Induction

GENEOA/OB (Eight State Model) & GENE9A/9B (Five State Mo0del)

Figure 6.4
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Table 6.1

Cost Analysis

Criterion GENEOA/OB GENE4A/4B GENE3A/8B

Uninduced .6979 19.098 11.905

Induced 7.9677 18.861 8.603

X2 = 0 .1151 2.806 5.690

X7-X8-0 (X5) .6517 19.588 9.690

State Values:

Uninduced Induced

State GENEOA/OB GENE4A/4B GENE8A/8B GENEOA/OB GENE4A/4B GENE8A/8B

X1 .02669 .02800 .02985 1.59421 1.60000 1.60597I
X2 .50077 2.45800 1.49254 .07694 4.03000 1.89851

X3 .50096 2.45800 1.49254 0 .10000 .29851

X4 0 .93600 2.28507 1.63394 .20000 1.49701

X5 .02712 2.45800 1.49254 1.63869 .10000 .29851

X6 .34659 0

X7 .26215 -. ,04654

X8 .07663 .25099
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Table 6.2

GENE9A/9B

Nominal Values:

Uninduced System Induced (1%) Induced (.4%)

Xl .02673 1.60167 .65670

X2 1.27395 1.67962 1.43622

X3 1.27268 .07954 .79543

X4 1.84664 1.05916 1.53165

X5 1.27268 .07954 .79543

Y 1.00138 60.01011 24.60487

eU=mO0000 el=.00010

Transient Analysis:

Characteristic Uninduced System Induced (1%)

1% Settling Time 26 sec. 7 sec.

5% Settling Time 21 sec. 5 sec.

10% Settling Time 21 sec. 1 sec.

Peak Overshoot 3751% 6.9%

Frequency .2 Hz .2 Hz

Time Constant 1.2 sec. 1.7 sec.

N1
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Table 6.3

GENE9A/9B Residual Analysis

Criterion Expected Computed Residual %Error

w/o Cat.Rep. 120.02022 60.32501 59.69521 49.74

0.4% ara 24.5 24.60487 .10487 .43

0.1 cAMP 24.0040 32.73021 8.72617 36.35

X1:X2 (1) 33.3:1 .95:1 32.35 97.14

0/2x cAPMP 70.20033 60.73768 9.46265 13.48

X2-0 1.0 63. 94400 62. 94400 6294

10% S.T. (1) 300 sec. 1 sec. 299 sec.

#-0values 0 0 0
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Table 6'.4

* Cost Analysis

Criterion GENEQAOB GENE9A/9B

Uninduced .6979 a.27313

Induced 7.9677 6.52096

X2 = 0 .1151 3.92609

X7-X8-0 (X5) .6517 6.83880

State Values:

Uninduced Induced (1%')

State GENEGA/OB GENE9A/9B GENEQA/OB GENE9A/9B

1xi .02669 .02673 1.59421 1.60167

X2 .50077 1.27395 .07694 1.67962

X3 .50096 1.27268 0 .07954

X4 0 1.84664 1.63394 1.05916

X5 .02712 1.27268 1.63869 .07954

X6 .34659 - 0 -

X7 .26215 -. 04654 -

X8 .07663 --. 25099 -



Chapter 7

Discussion

7.1 Conclusions

The L-arabinose Gene-Enzyme complex was modeled as a linear time

invariant system. The model which best fit the data, GENEOA/OB,

consisted of eight states representing the activity of the controlling

sites on the DNA and the concentrations of the controlling proteins

(repressor and activator).

The input/output behavior of the model was compared to data from

the literature. The output values for the model corresponded well to

Jthose values for the biological system, reported in the literature for

the uninduced system, the system induced with 1% arabinose and the

system induced with 0.4% arabinose. All of these output values were

well within the range of values reported in the literature.

The values of the states of the system also corresponded well

with the reported activities of the controlling sites on the DNA.

These values included the PBAD:Pc ratio (xl:x2), the P2/araO:P2/aral

ratio (x4:x5) and the Pl/araO:P2araO ratio (x3:x4).

The model responded to the removal of catabolite repression with

an increase in enzyme production, similar to the response of the

biological system although not to the extent reported in the

literature. Also, the model responded to varying inputs of cAMP in a

136
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manner similar to the biological syste. That is, a 90". decrease in

cAMP input caused a 1.5/ decrease in the output of the model, and an

increase in cAA.iP input by a factor of two caused a 3.3" increase in

the output of the model. Once again, these changes in the output were

not as large as those reported in the literature.

The output of the model reached a steady state value well within

the reported response time of the biological system (5 minutes), and

state dependencies were displayed that were predictable from the

experimental data as shown in Figures 4.3 - 4.16.

The model was found to be asymptotically stable and fully

controllable through the inputs as predicted by the data on the

biological system.

A comparison was made between the eight state dual control

model and a five state hypothetical repressor only model of the

L-arabinose system. The comparison was based upon the activities of

the states of the system which were related to the energy cost to the

cell. When the two models are fitted to biological data, results of

the comparison indicate that the more complex eight state model has a

lower energy cost than the five state model, requiring about one half

as much energy. This implies that for the L-arabinose Gene-Enzyme

complex, the more complex dual method of control may be more energy

efficient than a simple repressor only method of control.
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This result supports the "Demand Theory of Gene Regulation" by

suggesting that selection favored the method of control that was most

energy efficient for an operon that must be active about 50% of the

time.

7.2 Discussion of the Models

The approach of this research in many respects was unique. The

formulation of the equations describing the system's behavior was

based where possible upon relationships between the states of the

system as suggested in the literature, and not upon chemical kinetic

equations. Contributing to this choice, was the lack of available

quantitive data on the DNA kinetics of the L-arabinose system, and of

fdata on genetic control systems in general. In addition, these

equations assumed a totally linear relationship of variables. The

philosophy of the analysis was that a first approximation based upon

linearity could later be improved by the addition of non linearities

within the format of the model. In addition, a larger number of

standard analysis techniques are available for a linear model than for

a nonlinear one. For a first approximation, the model adequately

mimiced the actual system for normal input/output responses,

physiological parameters, such as activity ratios for various DNA

controlling sites, and mutational behavior, such as when there is no

activity of the controlling gene. Results in those areas fell within

the published experimental data. The xl:x 2 activity ratio in

the induced system was approximately 2:1 and the x4:x5 ratio

W, ui-
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* was nearly 1:1. When the controlling gene was inactive, the induced

output remained near the value for the uninduced system.

As discussed before, one area where the riodels encountered

difficulty was in the responses of the system to removal of catabolite

repression and varying amiounts of cAiiP. This u ay be due in part to the

basic model structure or to the linearity of the model. cA iP is

involved in many cellular activities, as well as being a part of the

regulatory process for many genetic systems [36,37]. Thus, because

cAi .P interacts in many different areas, the modeling of its binding in

this specific system, without accounting for other interactions, may

present more difficulty than that encountered for other substances.

Certain aspects of the system's behavior were not accounted for

'y using the models. A temporary derepression of the araC promoter

immediately following induction has been reported in the literature

[29,18]. The responses of the models do not demonstrate this behavior,

suggesting that additional complexities must be built into the model

to account for this behavior.

7.3 Future Considerations

As mentioned, all models encountered difficulty when catabolite

repression was removed or when cX4P input was varied. Possible changes

in the model were proposed that may improve the responses of the

model. These changes included the addition of another state to model

cAVIP concentration. Incorporation of these or other changes are vital

to further use of the model.

~vv.'
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Additional changes to the model are necessary to provide the

temporary derepression of araC that has been observed immediately

following induction [29]. It has been suggested that this derepression

is dependant upon L-arabinose concentration, such that small amounts

of arabinose cause P1 to dissociate from araO allowing araC to be more

active until the concentration of arabinose is great enough to form

sufficient P2 to bind both araI and araO, and once again repress araC

[29]. Simulating this effect most likely will involve changes to the

r equations for Pc, araO, and aral activity as well as for those

involving P1 and P2 concentrations.

Changes to the input and output formulations may also be

necessary. The transport of L-arabinose into the cell could be

Iconsidered as well as the internal production and utilization of cAMP

and RNAP. Also, the relationship between PBAD activity and enzyme

production should be reevaluated.

L
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GLOSSARY

araA, araB, araC - Structual genes of the L-arabinose system

araC - Controlling gene for the L-arabinose system

aral - Initiator site/binding site for the activator

araO - operator site/Binding site for the repressor

cA[]P - cyclic adenosine monophosphate

catabolite repression - The decrease in free cAMP attributed

to the increase in metabolic products.

CRP - cAMP receptor protein

GENE / - The various state space models of the system.

Induced system - System with L-arabinose input

L-arabinose - A five carbon sugar

ILeast square error - (Yexpected-Ycomputed) squared

LTI - Linear time invariant

Percent error - (residual/expected value) x 100

P1 - Repressor protein

P2 - Activator protein

PBAD - Promoter for araBAD/site of RNAP attachment

Pc - Promoter for araC/site of RNAP attachment

Residual - expected value minus computed value

RNAP - RNA polymerase/binds to DNA to begin transcription

Uninduced - System with no L-arabinose input.

Small letters represent individual states or scalers.

Capital letters represent vectors or matrices.
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